
Team Description for RoboCup 2017

Thomas Röfer1,2, Tim Laue2, Andre Mühlenbrock2

1 Deutsches Forschungszentrum für Künstliche Intelligenz,
Cyber-Physical Systems, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

2 Universität Bremen, Fachbereich 3 – Mathematik und Informatik,
Postfach 330 440, 28334 Bremen, Germany

1 Introduction

B-Human is a joint RoboCup team of the University of Bremen and the German
Research Center for Artificial Intelligence (DFKI). The team was founded in 2006
as a team in the Humanoid League, but switched to participating in the Standard
Platform League in 2009. Since then, we participated in eight RoboCup German
Open competitions, the RoboCup European Open 2016, and in eight RoboCups.
We always won the German/European Open and became world champion five
times.

This team description paper is organized as follows: In Sect. 2, we describe
our new detection of the orientation of other robots. In Sect. 3, we explain the
improvements we made to UNSW Australia’s walking engine to integrate it into
our system. Section 4 describes the approach of our new fall detection. Section 5
introduces an important change we made to our software framework. In Sect. 6,
we describe our efforts to improve the infrastructure of the league this year.
Finally, Sect. 7 summarizes this paper.

1.1 Team Members

B-Human consists of the following people, most of whom are shown in Fig. 1:

Team Leaders / Staff: Tim Laue, Thomas Röfer.
Students: Yannick Bülter, Daniel Krause, Jonas Kuball, Lam Duy Le, An-

dre Mühlenbrock, André Osse, Alicia Susan Pagel, Bernd Poppinga, Lukas
Post, Markus Prinzler, Enno Röhrig, Jurij Schmidt, René Schröder, Markus
Strehling.

Alumni: Florian Maaß, Judith Müller, Jesse Richter-Klug, Andreas Stolpmann,
Alexander Stöwing, Felix Thielke, Alexis Tsogias.

Associated Researcher: Udo Frese.



Fig. 1. The B-Human team after winning the RoboCup German Open 2017

1.2 Publications Since RoboCup 2016

As in previous years, we released our code after the RoboCup 2016 together with
a detailed description [6] on our website and on GitHub (https://github.com/
bhuman/BHumanCodeRelease). Up to date, we know of 23 teams that based their
RoboCup systems on one of our code releases (AUTMan Nao Team, Austrian
Kangaroos, BURST, Camellia Dragons, Crude Scientists, Edinferno, GraceBand,
JoiTech-SPL, Luxembourg United, Nao Devils, NimbRo SPL, NTU Robot PAL,
SPQR, UChile, Z-Knipsers/nomadZ) or used at least parts of it (Cerberus, MRL
SPL, Northern Bites, NUbots, RoboCanes, RoboEireann, TJArk, UT Austin
Villa).

We also described our approaches to image processing under varying light-
ing conditions, detecting the black and white ball, and combining simple field
features such as lines to more complex ones (e. g. oriented center circle, corners,
penalty areas) and their use for self-localization in our 2016 Champion Paper
[4]. Our C-based Agent Behavior Specification Language (CABSL) is used by
several teams in the Standard Platform League, usually if they base their sys-
tems on our code release anyway. To simplify its use in other environments, we
now also provide a standalone release with an extensive example [5].

2 Detecting the Orientation of Other Robots

Knowing the positions of the other players on a football pitch is a crucial aspect
for playing successfully. However, knowing not only the position but also the

https://github.com/bhuman/BHumanCodeRelease
https://github.com/bhuman/BHumanCodeRelease


(a) (b)

(c) (d)

Fig. 2. Major features for orientation detection: The location of the major line (orange)
and the area that contains more green pixels (yellow). (a/b) The major line and the
yellow marked area are on the same side when the robot is facing forwards and (c/d)
they are on a different side when the robot is facing backwards. The blue line depicts
the minor line.

orientation of another player provides certain tactical advantages. We developed
an approach that uses the alignment of robot feet to compute orientations, as
this feature turns out to be quite robust, in contrast to a robot’s upper body,
which might have a complex appearance due to moving arms and a jersey of
almost arbitrary style.

The approach consists of two steps which both analyze the region around a
previously recognized robot’s feet. First, we search for two lines – the so-called
major line and minor line – in this region. The major line is defined from toe
to toe and from heel to heel while the minor line is defined as a side line of a
foot. These two lines already allow calculating an orientation in the range of
[−90◦, 90◦). To obtain the complete orientation in the range of [−180◦, 180◦),
we determine whether the robot is facing forwards or backwards by analyzing
two areas in the color classified image over the feet. An example is shown in
Fig. 2. Both steps turn out to work quite reliably. However, by focussing on the
feet, the approach is not able to handle lying robots or robots that have a ball
directly at their feet.



The major benefits of our approach are its ability to determine orientations
even over distances of more than two meters, which is necessary as robots might
walk quite fast, as well as its computational efficiency, which is important as the
available computing time has always to be shared with many other components.
During several experiments, the longest execution time was 0.53 ms.

3 Integration of UNSW Australia’s Walking Engine

In 2016, B-Human participated in the Outdoor Competition. Although we still
became the runner-up, it was quite obvious that the walk that we have used since
2012 is not well-suited for artificial grass. Another walk that was very successful
in recent years is the one developed by Bernhard Hengst [1] for the team UNSW
Australia/rUNSWift. It won the RoboCup 2014 and 2015 and reached the final
in 2016 as part of UT Austin Villa’s system. It also appeared to work quite well
during the Outdoor Competition.

The Walk2014, as the walk is called, is based on three major ideas:

1. As in all walks, the body swings from from left to right and back during
walking to shift away the weight from the swing foot, allowing it to be lifted
above the ground. In contrast to many other walks, this is achieved without
any roll movements in the leg’s joints (unless walking sideways), i. e. the
swing foot is just lifted from the ground and set back down again, which is
enough to keep the torso in a pendulum-like swinging motion.

2. As a result, there is a clearly measurable event, when the weight of the robot
is transferred from the support foot to the swing foot, which then becomes
the new support foot. This event is detected by the pressure sensors under
the feet of the robot. In the moment this weight shift is detected, the previous
step is finished and the new step begins. This means that a transition between
a step and its successor is not based on a model, but on a measurement, which
makes the walk quite robust to external disturbances.

3. During each step, the body is balanced in forward direction by the support
foot. The approach is very simple but effective: the lowpass-filtered measure-
ments of the pitch gyroscope are scaled by a factor and directly added to the
pitch ankle joint of the support foot. As a result, the faster the torso turns
forward, the more the support foot presses against this motion.

Improvements. In contrast to some other teams that integrated the Walk2014,
we only use parts of its core implementation from the class Walk2014Generator.
We have removed everything not related to walking from that class, refactored
the code, converted it into a B-Human module, integrated B-Human data types,
and integrated our in-walk kicks. We also replaced the inverse kinematics by
our own, which results in a different rotational behavior. In the original imple-
mentation, the inverse kinematics is first solved for the legs ignoring any yaw
rotation of the feet. Then, the yaw rotation is added as a rotation around the



hip yaw-pitch joint (which is not entirely correct). Afterwards, an iterative al-
gorithm is used to return the feet to the positions they had before the rotation
was added. Our inverse kinematics simply computes the joint angles for the 6-D
positions of both feet, equally distributing the error introduced by the linked
hip yaw-pitch joint to both feet. The computation is not only more precise, it is
also a lot faster, as no iteration is involved. We now also use linear trajectories
for forward, sideways, and rotational motions of the support foot.

One of the core ideas of the Walk2014 is that a step ends when the weight
transfer happens and the next step starts from where the last step ended. The
latter was only fully implemented in the Walk2014 for forward and rotational
movement, but not for sideways movement and the height of the swing foot,
which may not have been set down completely before the weight has already
shifted. We implemented this, which results in less disturbances in situations in
which a step did not behave as expected anyway. We also implemented a mode
to reach a certain relative position on the field, always considering which motion
is unavoidable, since both legs always have to swing back to their zero position
before the robot can come to a full stop.

We use different gyroscope balancing parameters for forward and backward
rotation, because the feet are shorter at the back and stability benefits from
slightly more aggressive balancing in that direction. We also found that a lot of
differences between different robots can be compensated by varying the balancing
parameters. Typically, older robots need more aggressive balancing.

The Walk2014 assumes a fixed position of the center of mass in the torso.
Since our robots sometimes take their arms behind their back to better avoid
obstacles, this assumption is not valid for them. Therefore, we introduced a
dynamic center of mass computation into the walk, which considers the impact
of the arms’ positions. We also changed the acceleration of the robot to a linear
model. In addition, if the weight transition between the support leg and the
swing leg is not recognized, the current speed is reset to zero, resulting in the
robot accelerating again in a controlled manner afterwards. We also detect if the
weight transition is not recognized repeatedly, which can happen if the robot
leans against a static object, e. g. a goalpost. In that case, it starts moving
sideways away from the obstacle, which frees it from the deadlock. We also
recognized that robots sometimes get stuck in a lower swing frequency. This is
also detected and ended through a short stand phase.

4 Fall Detection

It is important to detect when a robot falls, when it reached the ground, and in
which direction it fell on the ground. Fall detection has two phases. The first one
is to determine that the robot is currently falling down. The second one is to
detect that the robot has reached the ground. It is important to recognize that
the robot is falling to prepare it for hitting the ground. In case of our team, the
head’s yaw joint is turned back to its center position and the pitch joint is turned
away from the fall direction. After that, the stiffness of all joints is significantly



Fig. 3. The coordinate system of the support foot (thin) and the estimated coordinate
system of the field plane (thick).

lowered. After the robot has hit the ground, a getup motion is started. So far,
both falling and hitting the ground were simply detected through thresholds of
the torso’s orientation in yaw and pitch directions. This lead to several special
cases for motions that changed the torso’s orientation intentionally. The main
innovation of our new approach is not to use the torso’s orientation anymore,
but the orientation of the support foot relative to the ground (cf. Fig. 3). The
support foot is the foot that is extended more in the direction of gravity than
the other foot. This allows detecting falling rather early independent from the
motion that is currently executed. In addition, returning to the upright state
can also be determined without dedicated feedback from the getup procedure
by simply observing how far the torso is above the ground, i. e. the length of the
support leg in the direction of gravity.

5 Framework Changes

A robot control program usually consists of several modules, each performing a
certain task, e. g. image processing, self-localization, or walking. Modules require
a certain input and produce a certain output (so-called representations). There-
fore, they have to be executed in a specific order to make the whole system work.
So far, the representations in the module framework introduced in [3] have only
forwarded data from a module to other modules. Starting in 2017, representa-
tions can now also provide functionality, i. e. they can contain functions, which
have an implementation that is provided by a module.

So far, all data in a representation had to be computed before it was used.
This lead to a certain overhead, because the data has to be computed in advance
without knowing whether it will actually be required in the current situation. In
addition, there is a lot of data that cannot be computed in advance, because its



computation depends on external values. For instance, a path planner must know
the target to which it has to plan a path before it can be executed. However,
in many situations a path planner is not needed at all, because the motion is
generated reactively.

Functions in representations allow modules that require the representation
to execute code of the module that provided that representation at any time
and they allow to pass parameters to that implementation. For instance, while
the behavior control of the 2016 B-Human system still contained many so-called
libraries that could compute all kinds of information on demand as a fixed part,
they are now simply representations that are provided by regular B-Human
modules that implement the logic behind the interface. These modules can be
switched to other implementations as all other B-Human modules can, giving a
greater flexibility when improving the functionality of the system.

These functions are based on std::function from the C++ runtime library
and the assigned implementations are usually lambda expressions.

6 Infrastructure for the League

As in previous years, we improved the infrastructure of the league. This year,
this effort was financially supported by the RoboCup Federation as a project for
league development.

6.1 GameController

Logging. The TeamCommunicationMonitor supports logging the team com-
munication, which is an important feature to document what happens during a
game. For instance, both the winners of 2016’s outdoor competition Nao Dev-
ils [2] as well as the winners of the main competition B-Human [4] analyzed
these logs in their publications. However, it appeared that it is quite difficult
to ensure that the TeamCommunicationMonitor is running during all games on
up to six different fields. Although it can continuously run in the background,
only all but one logs from the RoboCup European Open 20163 and around half
of the logs from the RoboCup 2016 4 were successfully recorded. Therefore,
the TeamCommunicationMonitor’s logging feature was also integrated into the
GameController, as it will always be running during official games. In contrast,
the TeamCommunicationMonitor only writes log files if no GameController is
running on the same machine.

Penalty Shootout. At RoboCup 2016, there were quite a number of penalty
shootouts in the SPL. This is usually a risk for the competition schedule, as such
games often take longer than the time allocated for them. Therefore, the tech-
nical committee decided to streamline the process of penalty shoutouts. Teams

3 spl.robocup.org/. . . /RoboCupEuropeanOpen2016TeamCommunicationLogs.zip
4 spl.robocup.org/. . . /RoboCup2016TeamCommunicationLogs.zip

http://spl.robocup.org/wp-content/uploads/downloads/RoboCupEuropeanOpen2016TeamCommunicationLogs.zip
http://spl.robocup.org/wp-content/uploads/downloads/results/RoboCup2016TeamCommunicationLogs.zip


Fig. 4. The GameController during a penalty shootout. The current penalty taker
is marked in green. The current goal keeper is marked in red. All other robots are
substitutes. The interface also shows the robots used in the previous shot (Black 1 and
Gray 2), which are the default ones for the next shot.

should now provide their penalty taker, their goalkeeper, and possible substi-
tutes at the beginning of the penalty shootout to the referees who will have to
handle the whole procedure on their own. However, until 2016, the GameCon-
troller handled a penalty shoutout as an event between two teams without caring
about individual robots. This means that teams had to switch off all robots that
were not actually playing. The new GameController (cf. Fig. 4) allows selecting
individual robots and penalizes all other robots (as substitutes). This is easier
for the teams, because penalization is also part of the normal game process and
should already have been implemented correctly.

Mixed Team Competition. In 2017, the SPL will have its first mixed team
competition, but no Drop-in Player Competition anymore. Therefore, the sup-
port for the Drop-in Player Competition was replaced by a mode for the Mixed
Team Competition. For now, the mode is identical with normal games, but with
six players per team. In the future, it should also support 10 vs. 10 games.

6.2 GameStateVisualizer Mode

The TeamCommunicationMonitor visualizes the standardized part of the com-
munication between the robots in a 3-D view. It has become quite popular in the



Fig. 5. The new GameStateVisualizer

league by now. At RoboCup 2016, several teams preferred to see it on the offi-
cial external screen of the GameController PC next to the previous GameState-
Visualizer. The previous GameStateVisualizer displayed compact information
about the current games to the audience in front of a background that fol-
lows the theme of the general event and is usually displayed on the external
screen. Displaying both programs next to each other resulted in a cluttered, un-
professionally looking screen. Therefore, the rather simple functionality of the
GameStateVisualizer was integrated into the TeamCommunicationMonitor as a
separate mode. As a result, the audience can see both, the general game infor-
mation as well as what the robots are “thinking” (cf. Fig. 5).

6.3 Website

Andre Mühlenbrock transferred the SPL website to spl.robocup.org (cf. Fig. 6).

7 Summary

Similar to most previous years, we incrementally improved our system by re-
placing certain components that did not seem to be competitive anymore for
upcoming competitions. Some of our new features, in particular the walking
engine, have already been used at the RoboCup German Open 2017 and con-
tributed to our success in that competition. Thus, we are looking forward to a
successful participation in the RoboCup 2017 in Nagoya!

http://spl.robocup.org


Fig. 6. The new website of the Standard Platform League

References

1. Hengst, B.: rUNSWift Walk2014 report. Tech. rep., School of Computer Science &
Engineering University of New South Wales, Sydney 2052, Australia (2014),
http://cgi.cse.unsw.edu.au/~robocup/2014ChampionTeamPaperReports/

20140930-Bernhard.Hengst-Walk2014Report.pdf

2. Hofmann, M., Urbann, O., Schwarz, I., Rensen, F., Moos, A.: Playing robot soccer
outdoor. In: Lofaro, D.M., BaekKyu Cho, K., Behnke, S., Lee, D.D., Lau, N. (eds.)
The 11th Workshop on Humanoid Soccer Robots at 16th IEEE-RAS International
Conference on Humanoid Robots (2016)

3. Röfer, T., Brose, J., Göhring, D., Jüngel, M., Laue, T., Risler, M.: GermanTeam
2007. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007:
Robot Soccer World Cup XI Preproceedings. RoboCup Federation, Atlanta, GA,
USA (2007)

4. Röfer, T., Laue, T., Richter-Klug, J.: B-Human 2016 – robust approaches for percep-
tion and state estimation under more natural conditions. In: Behnke, S., Lee, D.D.,
Sariel, S., Sheh, R. (eds.) RoboCup 2016: Robot Soccer World Cup XX. Lecture
Notes in Artificial Intelligence (2017), to appear

5. Röfer, T.: CABSL – C-based agent behavior specification language (2017), https:
//github.com/bhuman/CABSL

6. Röfer, T., Laue, T., Kuball, J., Lübken, A., Maaß, F., Müller, J., Post, L., Richter-
Klug, J., Schulz, P., Stolpmann, A., Stöwing, A., Thielke, F.: B-Human team report
and code release 2016 (2016), only available online: https://github.com/bhuman/
BHumanCodeRelease/raw/master/CodeRelease2016.pdf

http://cgi.cse.unsw.edu.au/~robocup/2014ChampionTeamPaperReports/20140930-Bernhard.Hengst-Walk2014Report.pdf
http://cgi.cse.unsw.edu.au/~robocup/2014ChampionTeamPaperReports/20140930-Bernhard.Hengst-Walk2014Report.pdf
https://github.com/bhuman/CABSL
https://github.com/bhuman/CABSL
https://github.com/bhuman/BHumanCodeRelease/raw/master/CodeRelease2016.pdf
https://github.com/bhuman/BHumanCodeRelease/raw/master/CodeRelease2016.pdf

	Team Description for RoboCup 2017

