
b-it-bots
RoboCup@Work

Team Description Paper

Torsten Jandt, Padmaja Kulkarni, José C. Mayoral, Deebul Nair, Boris
Ndimubanzi Senga, Santosh Thoduka, Iman Awaad, Nico Hochgeschwender,

Sven Schneider and Gerhard K. Kraetzschmar

Bonn-Rhein-Sieg University of Applied Sciences
Department of Computer Science

Grantham-Allee 20, 53757 Sankt Augustin, Germany

Email: <first_name>.<last_name>@inf.h-brs.de
Web: www.b-it-bots.de

Abstract. This paper presents the b-it-bots RoboCup@Work team and
its current hardware and functional architecture for the KUKA youBot
robot. We describe the underlying software framework and the developed
capabilities required for operating in industrial environments including
features such as reliable and precise navigation, flexible manipulation
and robust object recognition.

1 Introduction

The b-it-bots RoboCup@Work team at the Bonn-Rhein-Sieg University of Ap-
plied Sciences (BRSU) was established in the beginning of 2012. Participation
in various international competitions has resulted in several podium positions,
including runner-up at the world championship RoboCup 2016 in Germany. The
team consists of Master of Science in Autonomous Systems students, who are
advised by one professor. The results of several research and development (R&D)
as well as Master’s thesis projects have been integrated into a highly-functional
robot control software system. Our main research interests include mobile ma-
nipulation in industrial settings, omni-directional navigation in unconstrained
environments, environment modeling and robot perception in general.

2 Robot Platform

The KUKA youBot [2] is the applied robot platform of our RoboCup@Work team
(see Figure 1). It is equipped with a 5-DoF manipulator, a two finger gripper
and an omni-directional platform. In the front and the back of the platform,
two Hokuyo URG-04LX laser range finders are mounted to support robust lo-
calization, navigation and precise placement of the omni-directional base. Each



2

Fig. 1: b-it-bots robot configuration based on the KUKA youBot.

laser scanner is configured with an opening angle of 190◦ to reduce the blind
spot area to the left and right of the robot. For perception-related tasks, a close-
range RGB-D camera is mounted on the manipulator to the gripper palm. The
Intel R© RealSense

TM
SR300 camera [1] supports a range from approximately 0.2

m up to 1.2 m and operates on 30 Hz for the RGB- and on 60 Hz for the depth
stream. This sensor information is used for general perception tasks, such as: 3D
scene segmentation, object detection, object recognition and visual servoing. The
standard internal computer of the youBot has been replaced by one which has
an Intel R© Core i5 processor in order to perform the perception tasks; which are
computationally intensive. Another custom modification has been made for the
youBot gripper (based on the design of [3]) which enhances the opening range
to 6.5 cm and enables grasping of a wider range of objects. The new gripper (see
Figure 2) is actuated with two Dynamixel AX-12A servo motors which provide a
position interface and force-feedback information. This information can be used
to perform grasp verification. A final modification was performed on the back
platform of the youBot. It has been replaced with a new light-weight aluminum
version, the position of which can be manually adjusted forward and backward.
This allows to adapt the position of the plate for different tasks and objects
easily.

Fig. 2: Custom designed gripper for grasping a wider range of objects.



3

All technical drawings to the previously described modifications, as well as
various 3D printed sensor mounts, e.g. for the laser scanner and the RGB-D
camera, have been made public [5].

3 Robot Software Framework

The underlying software framework is based on ROS, the Robot Operating Sys-
tem [10]. We use the ROS communication infrastructure to pass information as
messages on topics between the functional components. Compared to services
and actions, topics support non-blocking communication and the possibility of
listening (e.g. by monitoring nodes) to the communication between two or more
nodes at any time. Further, we refactored many of our components from nodes
into nodelets, especially those components which pass large amount of data
among each other, like pointclouds or images. The wide range of various tools
provided by ROS are utilized for visualization, testing and debugging the whole
system. In our development process, we focus on designing small, light-weight
and modular components, which can be reused in various processing pipelines,
e.g. in pipelines of different domains or even on a different robot platform, like
the Care-O-bot 3 [11]. We have also standardized our nodes with the addition of
event in and event out topics. Our components listen to the event in topic
which expects simple command messages and allow for: starting, stopping or
triggering (run once) of nodes. The components provide feedback of their sta-
tus on the event out topic when they finish. This allows us to coordinate and
control the components with either simpler state machines or task planning; in
either case, the control flow and data flow between the components remains sep-
arated. This also allows us turn off computationally expensive nodes when they
are not needed.

In 2016, the team published a snapshot of their repository [4] used for the
KUKA youBot and the @Work league.

4 Navigation

Several components have been developed and integrated to move the robot from
one place to another in cluttered and even narrow environments.

4.1 Map-based Navigation

The navigation components we use are based on the ROS navigation stack
move_base which uses an occupancy map together with a global and local path
planner. For the local path planner a Dynamic-Window-Approach (DWA) is
deployed which plans and executes omni-directional movements for the robot’s
base. This enhances the maneuverability, especially in narrow environments.

The vast amount of configuration parameters of the move_base component
have been fine-tuned through experiments with several and differently structured



4

environments in simulation (e.g. a corridor, narrow passages, maze, etc.). Our
robot is able to navigate with a maximum linear velocity of 1.0 m/s and a
maximum angular velocity of 1.5 rad/s. The lateral speed is kept low due the
relatively large blind spots to the left and right of the robot. With these velocities
the robot is still able to react fast enough to avoid, decelerate or brake, when
there are objects moving dynamically in the environment.

Currently we are working on further improvements for the move_base com-
ponent, namely local and global planner, to allow more omni-directional motions,
especially at the beginning and end of a global path.

4.2 Force-Field Recovery Behavior

In certain situations, especially in narrow passages, the robot can get stuck; for
example, due to an overshoot the robots circumscribed radius is now in an area of
the costmap which is annotated as an obstacle. The ROS navigation stack does
not yet provide a proper behavior to recover from such kind of situation. We
extended the implementation by smARTLab@work [7] of the force-field recovery
behavior [8] which moves the robot away from obstacles in its vicinity. First, a
subsection of the local costmap with lethal cost in a certain radius is taken into
account. Each obstacle in the subsection is considered as a vector applying a
repulsive force on the center of the robot. By summing up all force vectors to
one overall force, we obtain the best possible direction in which the robot should
move to no longer be stuck. The resultant force is multiplied with a velocity
scale factor and sent as linear and angular velocities to the base controller. This
has proved to be very helpful for our navigation and has freed the robot in many
situations. The behavior is implemented as a plugin for the ROS navigation stack
and has been tested on several other robots such as the Care-O-bot 3.

4.3 Base Positioning in Front of a Workspace

To enhance the position and orientation accuracy especially in front of a workspace,
a simple and effective approach has been used to align the robot perpendicular
and in a certain distance to a workspace. A linear regression model is applied to
fit a line to each point of the front laser scan. The resulting orientation and dis-
tance to this line is fed forward to a closed loop controller which minimizes both
errors (i.e. angular and distance), by commanding linear and angular velocities
to the robot’s base. This component is used to compensate for the insufficient
accuracy of the ROS navigation.

5 Perception

Several components have been developed for processing the image and point
cloud data from the arm-mounted camera.



5

5.1 Object Recognition

Perception of objects relevant for industrial environments is particularly chal-
lenging. The objects are typically small and often made of reflective materials
such as metal. We use a RGB-D camera which provides both intensity and depth
images of the environment. This enables effective scene segmentation and object
clustering. But the spatial resolution is low even at the close range, and a signifi-
cant degree of flickering corrupts the depth images. The information captured in
a single frame is often not sufficient to determine the object type. Thus, for the
object recognition subtask a three-stage pipeline (see Figure 3) has been devised
which involves segmentation, accumulation and classification.

Fig. 3: Object perception pipeline

The first stage is concerned with scene segmentation, or, more precisely, find-
ing the workspace. We capture a single point cloud and downsample it using a
voxel grid filter in order to reduce the computational complexity. We then apply
passthrough filters to restrict the FOV which removes irrelevant data and fur-
ther reduces the computational burden. In order to perform plane segmentation,
we first calculate the surface normals of the cloud and use a sample consensus
method to segment a single horizontal plane. The convex hull of the segmented
plane is computed and represented as a planar polygon. Finally, we shrink the
polygon by several centimeters to make sure that it does not include the edge
of the workspace. This first stage of the pipeline is composed entirely of ROS
nodelets provided in the pcl_ros package. All the nodelets can be loaded into a
single nodelet manager which is deployed as a single process. Compared to the
communication between standard ROS nodes, where the pointclouds are passed
over the loopback network interface (if all nodes run on the same machine),
nodelets communicate over shared memory and there for reduce the communi-
cation overhead tremendously.



6

The second stage is data accumulation. We filter each frame to keep only
the points above the workspace polygon (the prism above the polygon), which
we then merge into an occupancy octree. Our experiments have shown that
five frames are a reasonable tradeoff between the run-time performance and the
amount of information accumulated. The accumulated cloud is then partitioned
using Euclidean clustering.

The final stage is object recognition. For each cluster we fit a minimal bound-
ing box and find the mean circle fit perpendicular to the third principal axis of
the cluster. Additionally, mean circles are fit on slices made along the first prin-
cipal axis [12]. The dimensions of the bounding box, radius, fitting error of mean
circles, and the average color of all points serve as feature vector for the previ-
ously trained SVM classifier. Based on this information, it outputs the predicted
object type along with the probability of correct classification.

5.2 Cavity Recognition

For certain tasks, the robot is required to insert objects into cavities (e.g. in a
peg-in-hole task). The correct cavity has to be chosen and the respective object
needs to be precisely placed into it. A combined 2D and 3D approach has been
developed to select the correct cavity for a given object.

Canny edge detection is applied to a grayscale image of the workspace to
extract the edges around the cavities and the workspace. The resulting edges are
dilated and combined into contours which form the outline of each cavity. Since
there are similar cavities with different scales, the 2D contours are not sufficient
to distinguish between them. Hence, they are converted into 3D contours using
the point cloud of the same scene. The 3D contours are then matched with
known templates of each cavity in order to find the best match. The pose of
each cavity is estimated using the centroid of the 3D contour with the x-axis
along its principal axis. Figure 4 depicts the output of the different stages of the
pipeline.

6 Object Manipulation

In order to grasp objects reliably, several components have been developed and
integrated on the robot.

From the object recognition, the pose of the object to be grasped is retrieved.
This pose is the input to a pre-grasp planner component which computes a pre-
grasp configuration based on the type of grasp, a distance offset and constraints
imposed by the robot’s manipulator and end effector. Due to its kinematic con-
straints, the robot might not be able to reach this computed pre-grasp configu-
ration with its end effector. Thus, a set of poses is sampled around the object’s
pose. An inverse kinematics solver is then used to find one reachable pre-grasp
pose from the list of sampled poses.

The rationale behind this process is to move the robot’s end effector close to
the target object instead of directly onto the object. This ensures that the end



7

(a) RGB image (b) Edges (c) 2D contours

(d) 3D contours (e) 3D contour template (f) Matched contour

Fig. 4: Intermediate outputs of the cavity recognition pipeline.

effector will not collide with the surface the object is located on. In a final step,
the object is approached with the end effector through a linear motion in the
Cartesian space.

Once the end effector reached the grasp pose, the gripper of the robot is
closed. A grasp monitor checks whether the object is grasped successfully utiliz-
ing the force and position feedback of the two Dynamixel motors, as well as a
photo reflective sensor mounted on the gripper tips.

7 Task Planning

Many robot application, especially in competitions, have been developed using
finite-state machines (FSM). But even for apparently simple tasks, such a FSM
can be very complex and thus become easily confusing for humans. Therefore,
our current FSMs have been replaced with a task planner.

For preliminary experiments, the Mercury planner [9] has been selected. It
achieved the highest score during the International Planning Competition 2014 in
a domain which is very similar to the transport domain of RoboCup@Work. The
planner allows to specify various cost information. In terms of RoboCup@Work,
these costs and can be e.g. distances between locations or probabilities of how
good a particular object can be perceived or grasped.

In order to integrate the new planner into our current architecture, the exist-
ing FSMs have been refactored to very small and clear state machines covering
only basic actions, like move-to-location, perceive-object, grasp-object or
place-object. For a particular task, the planner then generates a sequence of
those actions in order to achieve the overall goal. Finally, this plan is being ex-
ecuted and monitored. In case of a failure during one of the actions, replanning
is being triggered and a new plan is generated based on the current information
available in the knowledge base.

By a utilizing a task planner instead of FSMs, the maintenance has become
easier due to the fact that only small state machines need to be modified or



8

tested. Further, the previous FSMs designer does not need to consider and con-
struct all possible error cases by hand.

8 Conclusion

In this paper we presented several modifications applied to the standard youBot
hardware configuration as well as the functional core components of our current
software architecture. Besides the development of new functionality, we also focus
on developing components in such a manner that they are robot independent
and can be reused for a wide range of other robots with even a different hardware
configuration. We applied the component-oriented development approach defined
in BRICS [6] for creating our software which resulted in high feasibility when
several heterogeneous components are composed into a complete system.

Acknowledgement

We gratefully acknowledge the continued support of the team by the b-it Bonn-Aachen International
Center for Information Technology and the Bonn-Rhein-Sieg University of Applied Sciences. Finally,
we also acknowledge the support by our sponsors MathWorks, SolidWorks and igus GmbH.

References

1. Intel RealSense SR300 camera. https://click.intel.com/
intelrealsense-developer-kit-featuring-sr300.html. (Online: 23.03.2017.).

2. KUKA youBot. http://www.youbot-store.com. (Online: 23.03.2017.).
3. LUHbots - RoboCup@Work team. http://www.luhbots.de. (Online: 23.03.2017.).
4. Software repository of b-it-bots team used at RoboCup 2016 in Germany. https:

//github.com/mas-group/robocup-at-work. (Online: 23.03.2017.).
5. Technical drawings of BRSU youBot modifications. https://github.com/

mas-group/technical_drawings. (Online: 23.03.2017.).
6. R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar, H. Bruyninckx,

P. Soetens, M. Haegele, A. Pott, P. Breedveld, J. Broenink, D. Brugali, and
N. Tomatis. Brics - best practice in robotics. In In Proceedings of the IFR Inter-
national Symposium on Robotics (ISR 2010), Munich, Germany., June 2010.

7. Broecker, Bastian and Burger, Benjamin and Claes, Daniel and Fossel,Joscha
and Schnieders, Benjamin and Williams, Richard and Tuyls, Karl. The smART-
Lab@Work 2016 Team Description Paper. In RoboCup, Leipzig, Germany, 2016.

8. Chong, Nak Young and Kotoku, Tetsuo and Ohba, Kohtaro and Tanie, Kazuo.
Virtual repulsive force field guided coordination for multi-telerobot collaboration.
In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, volume 1, pages 1013–1018. IEEE, 2001.

9. Michael Katz and Hoffmann Jörg. Mercury planner: Pushing the limits of partial
delete relaxation. In International Planning Competition (IPC), pages 43–47, 2014.

10. Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.



9

11. U. Reiser, C. Connette, J. Fischer, J. Kubacki, A. Bubeck, F. Weisshardt, T. Ja-
cobs, C. Parlitz, M. Hagele, and A. Verl. Care-o-bot 3 - creating a product vision
for service robot applications by integrating design and technology. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1992–
1998, Oct 2009.

12. Thoduka, Santosh and Pazekha, Stepan and Moriarty, Alexander and Kraet-
zschmar, Gerhard K. RGB-D-Based Features for Recognition of Textureless Ob-
jects. In Proceedings of the 20th RoboCup International Symposium, Leipzig, Ger-
many, 2016.


