Team Description Paper robOTTO
RoboCup@Work 2017

Christoph Steup, Martin Seidel, Jonathan Beckhaus, Philipp Busse, Alexandra
Grube, Christina Griill, Nils Harder, Lukas Hoyer, Johannes Kopton, Adrian
Koring, Rodion Marynych, Hauke Petersen, Kai Riissel, Sanaz Mostaghim,
Sebastian Zug, Arndt Liider, and Stephan Schmidt

Otto-von-Guericke University, 39106 Magdeburg, Germany
{steup,maseidel}@ovgu.de,
WWW: http://www.robotto.ovgu.de/

Abstract. Team robOTTO is the RoboCup@Work League team of the
Otto-von-Guericke University Magdeburg, formerly participating in the
Robocup Logistics League since its founding in 2010. In our team, we
combine the expertise from Computer Science, Electrical and Mechanical
Engineering to solve @Work’s unique challenges while fostering knowl-
edge exchange between the different leagues.

Keywords: RoboCup@Work, robOTTO, RoboCup2017

1 Introduction

robOTTO was founded as a RoboCup Logistics[4] team in 2010 by nine stu-
dents from different fields, enabling exchange of knowledge and views between
the members. After achieving second place 2010 in Singapore the team continued
to attend following RoboCup competitions with further successes in 2012 (4th
Place) and 2013 (2nd Place). The change from RoboCup Logistics to @Work
League helped to broaden the expertise of the team and in fact eased the
Crossover Challenge[7] at the @Work League, resulting in a first place at world
cup in Leipzig 2016. In 2012 a first attempt at a second competition resulted in
an 8th place in the 2D Soccer Simulation League. With regards to broad rule and
equipment changes in the Logistics League in 2015 we decided to participate in
the @Work League[3], as the Computer Science Faculty already had some expe-
rience on the KUK A youBots|1], thus providing a pool of experienced students
and easy integration into courses and research projects. The team competed in
the world cup 2015 in China and reached 6th place followed by the world cup in
Leipzig in 2016, where we scored 4th.

2 Team Structure

Currently, the team consists of 13 active members, whereas the professors are
not involved in the development and only provide guidance and organizational

Task Name Field / Role
Sanaz Mostaghim Responsible Professor
Sebastian Zug TC Member
Organisation Arndt Lider Liason to Mechanical Engineering
Stephan Schmidt
Christoph Steup Team Leader
Martin Seidel Co-Team Leader
Navigation Philipp Busse Computer Science / OC Member
Hardware Nils Harder Electrical Engineering
Kai Riissel Mechatronics
. . Rodion Marynych Electrical Engineering
Manipulation Hauke Petersen Mechatronics
Recognition Johannes Kopton Cybernetics
Adrian Koring Computer Vision
Jonathan Beckhaus Computer Science
RobotCoordination Alexandra Grube Business Informatics

Christina Griill Medical Engineering
Lukas Hoyer Computer Science
Table 1. Overview of robOTTO team members by task and field of studies or role

support. Since the team is mainly composed of students, who leave the team
after finishing their studies, we have a young and dynamic team of students.
Depending on the new members and their backgrounds, the team can largely
benefits from a diverse set of expertise. The current team members provide a
large spectrum of topics from cybernetics and business informatics to medical
engineering to the team as shown in Table 1. The new students provide new
ideas and also new challenges to the team. Currently, the new members try to
ease the use of the robot in the competition to minimize human errors, as they
found the work-flow quite difficult.

3 Robot Description

The standard KUKA youBot does not provide any sensory equipment. Modi-
fication were necessary to use the robot in the @Work league. To minimize effort
and maximize results most of the additions are COTS, used in the robotics
community. Our modification relate to the sensory equipment consisting of an
additional camera and two laser scanners and to the manipulation system ex-
tended with a specialized gripper. Additionally, we switched to a more powerful
PC.

3.1 Changes to the standard Platform

Camera We use an Intel RealSense RGB-D camera which provides registered
point clouds as well as an RGB-D image. Currently, we focus on the colour data
for recognition and use the depth image as a highly flexible distance sensor.

Fig. 1. Modified KUKA youBot

Around the lenses and projectors of the RealSense we mounted an oval-shaped
ring of LEDs to improve lighting conditions and enable a reliable object detection
and classification. During navigation the RealSense camera is used to detect
barrier tape.

Gripper The objects of the @Work league have varying shapes and sizes. After
preliminary tests we observed that the normal metal gripper on the KUKA
youBot cannot reliably handle many of these objects. Our current gripper is
based on an custom 3D-Printed mount using servos by Dynamixel and Finray-
fingers by Festo, which are controlled by an Arduino. Current development
focus on correctly identifying and handling error cases like the loss of an object.
Additionally, we aim to improve the grasping of not perfectly aligned objects.

Computing and Connections An Intel Core i7 NUC was fitted into the
robot as a replacement for the original Atom-based computer to enable more
complex algorithms for navigation, path planning and task optimization. Addi-

tionally, an Arduino was fitted to the chassis to integrate various embedded
components like servos, time-of-flight distance sensors and LEDs. The hardware
and software architecture is modularized through defined interfaces to provide
a stepping stone for students inexperienced with programming to experiment
without needing the whole development stack used on the main robot.

Laser Scanner Mounting Brackets The team uses Hokuyo URG-04LX
laser scanners. These provide appropriate distance measurements in a 240° ra-
dius with a maximum distance of 5.5 m. A reliable localization is possible if the
laser scanners are exactly parallel to the ground. To this end the team designed
reliable, adjustable mounting brackets, which were 3D printed by the team to
prevent tilt errors even at the edge of the scanner’s measurement range and
shield the expensive sensors in the case of accidental collisions.

3.2 Future Modifications

Batteries and Power Supply We originally planned to replace the batteries
and power-supply completely for a lithium-ion based system, but the experiences
gathered while transporting batteries by plane for last years’ world cup in Hefei
put a stop to that plan as lithium batteries in the required size are not allowed
to be transported on passenger planes without special permits. Our alternative
solution for the mid-term will be to replace the internal charging circuit to enable
full capacity charging and prevent deep discharge of one battery cell which seems
to be caused by the control-panels power draw even if the robot is turned ”off”.

Replacement of the Upper Case For the time being, the upper case of the
youBot is a bended steel plate, that’s connected to the bottom panel. On the top
there are recesses for the display, various ports (USB, LAN, power connection)
and threaded holes to mount the Arm. Beneath the steel case is the electronics.

We have extended the upper case with an aluminium plate. It provides more
place for an inventory and gives the opportunity to offset the arm to the side,
see figure 1.

In the future the upper case will be completely replaced by a new construction
consisting of several parts. It will provide the option to access the underlying
electronics easy, while extending the space inside the robot. This enables an-
other Intel Core i7 NUC and the Arduino to be stored inside the robot, see
3.1. Furthermore, the inventory, emergency switch and arm will have pre-build
mountings on the new case. Thanks to multiple mounting holes the inventory
can be offset and additional parts can be added easy to the surface.

4 Software Architecture

In this section we want to describe the main software components and how
they interact. We use the Robot Operating System (ROS)[5] in the Kinetic
version running on Ubuntu 16.04. The main advantages are the communication
abstraction and the great number of easy-to-use debug tools.

4.1 Overview

Fig. 2 shows the interaction of our software components. They are described in
detail in the following sections.

@work-Refbox

opti:'r:izer

Y

}R
Y
| navigation- arm-

statemachine recognition_2d | statemachine

| /

move_base | movelt | | gripper ‘

barrier_tape
detection

Fig. 2. Overview of the main software components of the robOTTO @Work framework.

State-Machine and Optimizer Core elements of the robot software architec-
ture are the optimizer and the state-machine, which are responsible for coordi-
nating the other modules of the robot like vision, navigation and arm movement.
The transportation tasks, which the robot has to fulfil, are generated by the
@work referee box of the league and transferred to the robot. On the robot side
the receiver_node is used for processing and forwarding those messages to the op-
timizer. The optimizer searches for a sequence of transport tasks which reaches
the maximum score within the time limit. Subsequently it generates SubTasks
as an input for the state machine. Typical SubTasks are picking up an object,
placing an object or moving the robot to a workstation.

The state machine contains a logic for every SubTask. The logic determines
a graph of parametrised actions which are necessary to perform the SubTask.
Common actions are the MoveAction, ArmAction and VisionAction. They con-
trol the sub-state machines of the corresponding robot modules. For instance a
simplified PickLogic consists of following actions:

1. ArmAction moves the arm to the pose for barrier tape recognition.
2. MoveAction moves the robot to a specified workstation.

3. ArmAction moves the arm to the pose for object recognition.

4. DetectAction looks for the specified object on the workstation.

5. ArmAction picks up the object which was localized by the vision and place
it in the inventory.

Because a reliable state machine is critical for the success of a robot performance,
it is one of the most intensively unit tested modules of the robot.

World Model The world cup 2017 in Leipzig showed that the complexity
of the tasks and the environment is difficult to handle in our current software
architecture. To incorporate additional information on the state of the arena
or the robot lots of changes to code and interfaces were necessary. To mitigate
this engineering issue, we decided to manage the information on the world in
a central component. The resulting world model component allow us to store,
track and replay changes to the robots and the arenas state. Additionally, we
add support to add and modify the data in the world model of a specific task
and visualize it. The major benefit of this approach is the stability of interfaces
between our functional SubTask components, as well as the centralized point
for team members to add and request information on the world. Finally, the
visualization tool gives us better insights into the robots current behaviour and
choices to ease debugging.

Self learning Object Recognition - recognition_2d Last year we switched
from 3D point cloud recognition to a 2D image approach. Therefore, we imple-
mented an image processing based segmentation algorithm. For classification the
images are passed through a self-implemented artificial neural net (ANN). The
ANN takes the preprocessed RGB image (or perhaps depth map in the future)
as its input and provides a probability value for each object as output. The
training of the ANN uses the recorded and annotated example image streams as
input and outputs the parameters of the ANN. The object features are learned
automatically during the training of the neural net. The orientation of the ob-
jects is determined using linear approximation. Our current goal is to improve
the recognition results under poor lighting conditions and with unfavourable
backgrounds.

Path Planning for Industrial Robots The navigation of industrial robots
has to be developed with multiple competing influences in sight, as fast move-
ment and collision avoidance are both critically important to successfully par-
ticipate in RoboCup@Work. Other factors are more subtle, like predictability
of behaviour and easy maintenance and adaptability. The last two points are
especially important in the context of RoboCup as a competition of students,
where team members and responsibilities switch regularly and members have to
be able to familiarise them self with the code, often on a short notice.

The current navigation stack used by robOTTO supports two different ap-
proaches. The first approach uses the DWA-Planner (Dynamic Window
Approach)[2] which is open source code and the standard planner for holo-
nomic platforms in ROS. Since, it is quite complex with many configurable

parameters we use a slightly modified parameter-set which was made available
publicly by the b-it-bots team for usage with the KUK A youBot.

The second approach is a minimal implementation of a local Planner which
relies on the global planner for object avoidance to keep the complexity and fea-
ture duplication down. It was developed after preliminary tests with the DWA-
Planner showed unpredictable and often oscillating behaviour depending on a
multiple factors like CPU load and floor conditions.

Furthermore, our team member Hauke, is developing a global path planner
in his master thesis. His planner is based on the Open Motion Planning
Library (OMPL)[6]. The OMPL provides a set of tree- and road-map-based
planners that are easily interchangeable. Besides the typically positions, this
global planner will compute the orientations of the robot along the path.

Integration of the Movelt! Trajectory and Kinematics Stack The pre-
viously used kinematics stack for the manipulator used by the team, SAMIA,
was built by former member Stefan as a by-product of his Master’s Thesis and
subsequently adapted for the @Work competition. But with Stefan gone we now
face problems maintaining and extending the codebase. This led to the decision
to abandon our own stack in favour of Movelt!!. Movelt! is an open-source
motion planning framework originally developed by Willow Garage, which unifies
motion planning kinematics, collision checking and dynamic three-dimensional
environment representations. As it was initially developed to be used with ROS,
it offers a high degree of integration with existing packages and tools, such as
RViz. The stack’s incorporation into our code, as well as the creation of the
arm-state-machine 2 and interfacing with our main state machine was done by
Hauke. Since then it proved to be a viable alternative to our previous solution and
had successfully been used at GermanOpen 2016 in Magdeburg and RoboCup
2016 in Leipzig. One of the stack’s issues on our platform was the calculation
time required to generate a valid movement trajectory. For this purpose we have
developed a ROS package which allows caching static trajectories (e.g. when
placing an object in one of the inventory slots) and integrate them in dynamic
trajectory paths to speed up the calculations. Currently, we are working on a
feature allowing quick movements within a small area without time-costly kine-
matic calculations, an option much needed for the upcoming implementation of
the Precision Placement Task.

4.2 Future Software Components

Barrier Tape Detection The Barrier Tape Detection is asked to spatially
locate barrier tape strips given a camera image and position.

To achieve this, we first detect the barrier tape in the image. This is done
by segmentation, separating the pixels showing the barrier tape from everything
else and saving the result in a binary mask. Using the mask and the camera pose

! http://moveit.ros.org/

- together with the assumption of a planar floor - we then calculate a 3D point
cloud that, as a whole, indicates the position and extend of the barrier tape in
the arena.

The image segmentation is achieved using a convolutional neural network.
The networks’ input is the camera image and the corresponding output will be
a mask containing the segmentation. Training of the network is achieved using
a data set of already segmented images. Those images are either generated or
recorded and labelled in test runs, when the barrier tape position is known
beforehand.

To get the world coordinates of the barrier tape we cast rays from the camera
through the white pixels in the mask into the scene and find intersections with
the ground plane. All such intersection points finally form the resulting point
cloud.

Precision Placement SubTask To start the PPT-SubTask the Robot picks
up the object and moves to the PPT-Table. The Vision recognizes the specified
hole. Once the robot is situated in front of the right opening the arm picks up
the object out of the inventory and moves directly above the hole the object
needs to be placed in.

To cope with the movement errors of the arm the PPT controller moves the
object slightly in all possible directions, while the visions compares object and
opening and feeds back the information to the PPT controller. The controller
calculates the best position, which is needed to successfully place the object in
the hole. After the object is at the optimal position above the opening, the PPT
controller tells the arm to lower it closer to the opening. During the lowering
process the vision checks the alignment of object and opening to ensures a suc-
cessful process. As soon as the object is close enough above the opening the
gripper drops the object straight into the hole.

5 Conclusion

With the influx of new team members and the continued participation by last
years members we are cautiously optimistic that we will be able to build upon the
work done last year while cleaning up the artefacts left by frantic development
during the world cup. The last participation left us with a code base solving most
of the tasks of the @work league. This enables us to focus this year on testing
and improving the robustness of the working solutions. The additional members
in our team allow us to develop the non-existent functionalities in parallel.

Acknowledgements

We would like to thank Sebastian Zug, chair of the work group for Embedded
Smart Systems and Sanaz Mostaghim, chair of Intelligent Systems Group for
their support during the year and providing us with access to tools and the

necessary facilities for storage and testing. The team and all former members
would also like to thank Arndt Liider for his engagement and support since our
founding in 2010.

References

1. Rainer Bischoff, Ulrich Huggenberger, and Erwin Prassler. Kuka youbot-a mobile
manipulator for research and education. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 1-4. IEEE, 2011.

2. Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach
to collision avoidance. IEEE Robotics € Automation Magazine, 4(1):23-33, 1997.

3. Gerhard K Kraetzschmar, Nico Hochgeschwender, Walter Nowak, Frederik Hegger,
Sven Schneider, Rhama Dwiputra, Jakob Berghofer, and Rainer Bischoff. Robocup@
work: competing for the factory of the future. In Robot Soccer World Cup, pages
171-182. Springer, 2014.

4. Tim Niemueller, Daniel Ewert, Sebastian Reuter, Alexander Ferrein, Sabina Jeschke,
and Gerhard Lakemeyer. Robocup logistics league sponsored by festo: a competitive
factory automation testbed. In Automation, Communication and Cybernetics in
Science and Engineering 2015/2016, pages 605-618. Springer, 2016.

5. Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, pages 1-6. Kobe, 2009.

6. Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion planning library.
IEEE Robotics & Automation Magazine, 19(4):72-82, 2012.

7. Sebastian Zug, Tim Niemueller, Nico Hochgeschwender, Kai Seidensticker, Martin
Seidel, Tim Friedrich, Tobias Neumann, Ulrich Karras, Gerhard Kraetzschmar, and
Alexander Ferrein. An integration challenge to bridge the gap among industry-
inspired robocup leagues. In RoboCup Symposium, pages 1-12, 2016.

