
An Omni-directional Kick Engine for Humanoid

Robots with Parameter Optimization

Pedro Pena and Joseph Masterjohn and Ubbo Visser

University of Miami, Department of Computer Science,
1365 Memorial Drive, Coral Gables, FL, 33146, USA

E-Mail: {pedro|joe|visser}@cs.miami.edu

Abstract. Incorporating a dynamic kick engine that is both fast and
effective is pivotal to be competitive in one of the world’s biggest AI
and robotics initiative: RoboCup. Using the NAO robot as a testbed, we
developed a dynamic kick engine that can generate a kick trajectory with
an arbitrary direction without prior input or knowledge of the parameters
of the kick. The trajectories are generated using cubic splines (two degree
three polynomials with a via-point). The trajectories are executed while
the robot is dynamically balancing on one foot. When the robot swings
the leg for the kick motion, unprecedented forces might be applied on
the robot. To compensate for these forces, we developed a Zero Moment
Point (ZMP) based preview controller that minimizes the ZMP error.
Although a variety of kick engines have been implemented by others,
there are only a few papers on how kick engine parameters have been
optimized to give an effective kick or even a kick that minimizes energy
consumption and time. Parameters such as kick configuration, limit of
the robot, or shape of the polynomial can be optimized. We propose an
optimization framework based on the Webots simulator to optimize these
parameters. Experiments of the physical robot show promising results.

1 Introduction

Generating dynamic motions on a robot without explicitly programming the
motion is a difficult task and a fairly new research area. Kick engines such
as [1, 15, 10, 8, 13, 2] have been developed for the NAO robot and although
they are dynamic, there are static values incorporated into the kicks such as
retraction points, foot position from floor, hip/ankle pitch and hip/ankle roll
ratio, and shapes of trajectories. These values are usually derived from empirical
observations and are not guaranteed to be optimal values. The difficulty of the
task is to optimize parameters on the physical robot because the robot is limited
by hardware, energy consumption, and most importantly real time execution.
Hence, the robot cannot run for thousands or millions of iterations to get a good
set of parameters. Other dynamic kick engines such as [16] developed a kick
engine for the THOR-MANG from Robotis that generate static kick motions.
Lengagneua et al. [7] have developed a kick engine that incorporates optimization
offline and a re-planning step when the kick is executed but do not optimize on

the physical robot or use a simulation software that takes into account hardware
properties of the robot. We propose a new kick engine for the NAO robot that
can dynamically balance on one foot using a Zero Moment Point (ZMP) based
preview controller while also generating kick trajectories using cubic splines.
The values of the kick trajectories are optimized in the Webots Simulator to
get a good set of parameter values. The overview of the control frame work is
presented in 1.

Kick Engine

Preview Controller

CoM Inverse Kinematics

Spline Trajectory

Zero Moment Point Center of Mass

Contact Torque Constraints Kick Limits

Joint Angles Cubic Polynomials

Parameter Optimization

Fig. 1: Overview of the control framework for the kick engine

The major components of the control framework are preview controller, spline
trajectory, center of mass (CoM) inverse kinematics, and parameter optimiza-
tion. The paper is organized as follows: we discuss relevant work in the next
section and describe the ZMP based preview controller in Section 3. Section 4
describes how to move the center of mass to the desired position, and Section 5
describes how the kick trajectory is generated. The model optimization on the
kick is discussed in Section 6, and our experiments and results are explained in
Section 7, followed by the conclusion in Section 8.

2 Related Work

Wenk et al. [13] developed a kick engine that generates online kick motions using
trajectories generated by Bzier curves, but in order to create such motions, the
humanoid robot has to dynamically balance on one foot so it can handle any
force generated by the kick. In order to find these forces, Wenk et al. used inverse
dynamics to calculate the ZMP. Inverse dynamics can be computed such that
given the acceleration, we work out the forces. The Inverse Dynamics problem
was solved using a variation of the Recursive Newton Euler Algorithm (RNEA).
For the kick trajectories the authors used Bzier curves that are continuously
differentiable to generate a kick.

Böckmann et al. [2] provided a mass spring damper model to model motor
behavior, and modified the ZMP equation to account for this behavior to get
the actual motor position rather than a believed state. The authors also adapted
Dynamic Motion Primitives (DMP) to generate kick trajectories. Kick trajecto-
ries are usually generated from Bzier curves or via-point kick trajectories, but
here the authors used a PD controller with a forcing term in the transformation
system to control the shape of the trajectory.

Sung et al. [11] used full body motion planning and via-point representation
to generate joint angle trajectories. These trajectories are generated using five

degree polynomials and via points are specified to constrain the swing trajectory.
For the balancing the authors also used ZMP. In order to create efficient full
body motion trajectories the author used optimization techniques such as Semi-
Infinite Programming (SIP) to specify constraints such as minimal energy and
torque. The optimization also dealt with joint redundancy.

Yi et al. [16] used THOR-OP (Tactical Hazardous Operations Robot - Open
Platform) full sized humanoid robot to generate kick and walk motions for the
AdultSize League in RoboCup 2014. The robot had a hybrid walking controller
that used two types of controllers: ZMP preview controller and a ZMP based
reactive controller. The ZMP based reactive controller used techniques such as
Central Pattern Generators to create motions that require less computation than
the ZMP preview controller. The kick motions generated were handled by the
hybrid walking controller to create smooth transitions between the dynamic walk
and strong kick.

The kick engine of Xu et al. [15] is separated into four phases: preparation,
retraction, execution, and wrap-up phase. The authors use a grid space to find
the kick that maximizes the distance in the retraction point and minimizes the
angle between the direction of the foot and the direction of the ball. The maxi-
mum distance of the retraction point of the foot is assumed to create the greatest
impulse. The stabilization of the robot is done with a Body Inclination Control
that controls the torso angle to maintain the center of mass in the support poly-
gon. The authors also found the reachable space through experimentation. The
kick engine was experimented on the NAO robot.

Although these approaches use a dynamic kick engine that utilizes a con-
troller for balancing and generate kicks online or offline, they all lack a frame-
work that uses model optimization to find kicks under certain constrains such as
strongest kick or fastest kick. In our approach, we use a controller for balancing
and cubic splines for kick trajectory and then we use optimization to find a good
set of parameters for the kick. Next, we will discuss each component of the kick
engine.

3 ZMP based Preview Controller

This section describes how the robot stabilizes on the supporting foot. A ZMP
based Preview Controller is used to keep the Zero Moment Point (ZMP) in the
support polygon. The first section describes the definition of ZMP and how it
is derived. The following section will illustrate how the Preview Controller uses
the ZMP to stabilize the robot.

3.1 Zero Moment Point

In order for the humanoid robot to balance, it has to maintain contact with the
ground. When the robot is at rest, the Center of Mass (CoM) has to be inside
the support polygon. The CoM is defined by:

CoM =
mjcj

M
(1)

Fig. 2: Support Polygon

Fz

τz

Fig. 3: ZMP location

where (mj , cj) is the weight and position vector respectfully of the jth link,
and M =

∑

mj . The support polygon is the area touched by the robot and
the ground. When the robot is kicking, the area touched by the robot in the
ground is the supporting foot. The support polygon is the convex hull of the
foot touching the ground and it is defined by

CoS =
{

∑

αjpj |αj ≥ 0,
∑

αj = 1,pj ∈ S(j = 1, ..., N)
}

where S(j = 1, ..., N) is the set of edges of the supporting foot. When the robot
is at rest, the CoM criterion is enough to stabilize the robot, but if the robot is
in motion, the CoM might leave the support polygon. In that case, we can use
another criterion to verify the supporting foot still has contact with the ground.

The dynamic criterion for the robot to maintain contact with the ground
is the Zero Moment Point (ZMP) [12]. In order to correctly balance the robot,
roboticists use ZMP to keep the robot from falling. The ZMP is the point where
the robot’s contact point with the ground does not generate a moment about
the y and x axis. This is defined by

ZMP = {po × f + τ = 0|τx, τy = 0} .
(2)

Therefore the robot does not rotate about these axes and tip over. Notice that
the ZMP criterion does not say anything about the moment about the z axis.
This rotation is allowed in the ZMP but it does not fall but rotate about the
z axis. In order to derive the ZMP, the x and y components of (2) need to be
solved and approximated by discretized points:

ZMPapprox. = {(pi − po)× fi + τi = 0|τix, τiy = 0} .

Therefore,

px =

∑N

i=1 −τiy − (piz − pz)fix + pixfiz
∑N

i=1 fiz
and (3)

py =

∑N

i=1 τix − (piz − pz)fiy + piyfiz
∑N

i=1 fiz
. (4)

This is a very simple model, the full dynamics of the physical world can not
be captured. Hence, a Kalman filter was used to add noise to the model. The
measurement model used for the Kalman filter was the foot sensors from the

NAO robot. The data from the foot sensors were used to solve for (3) and (4).
The foot sensors give us values for the normal ground force exerted at the contact
points. Therefore all the terms in (3) and (4) except fiz are zero, resulting in

px =

∑N

i=1 pixfiz
∑N

i=1 fiz
py =

∑N

i=1 piyfiz
∑N

i=1 fiz
. (5)

The NAO robot has four sensors in the each foot, and it can be used to measure
the magnitude of the force. Using (5) and the magnitude and position of each
sensor, the empirical ZMP can be computed. For the belief model of the Kalman
filter, we use (2) and we approximate the ZMP using a linear inverted pendulum
[5, 3]. The dynamics of the inverted pendulum is well understood in physics and
it is used to model the dynamics of balancing for the humanoid robot. The top
of the pendulum is assumed to be the CoM of the robot and the bottom part is
assumed to be negligible. Therefore, we need to assume that the legs of the robot
do not weigh much compared to the center of mass of the robot. Therefore, the
linear and angular momentum of the center of mass is

P = M ċ L = c×M ċ (6)

To compute the approximated ZMP, we use (2) and (6) and get,

px = (z−pz)ẍ
z̈+g

py = (z−pz)ÿ
z̈+g

(7)

With a belief and measurement model, we can get a close approximation to the
ZMP. We can now use a controller that will control the ZMP to maintain it in
the polygon of the supporting foot. This will be discussed in the next section.

3.2 Preview Controller

The ZMP Preview Controller is based on the cart table model and it is a closed-
loop system [4, 6, 3]. This model assumes that given the cart on the table, the
Center of Pressure (CoP) (foot of the table) is affected, and in turn, affects
the stability of the table (ZMP is affected). The ZMP Preview Controller is
based on future ZMP positions of the robot. Since the robot is not walking,
it is assumed that the robot will have the same future preview gains. This is
an important simplification because it helps with the computation time. The
Preview Controller uses a Linear Quadratic Regulator (LQR) to find the optimal
values of the gains,

J =
∞
∑

j=1

{

Q(prefj − pj)
2 +Ru2j

}

where R and Q are weights. The LQR tries to solve a Riccati differential equation
for the optimal values,

P = ATPA+ cTQc−ATPb(R + bTPb)−1bTPA

where,

A =





1 δt δt2/2
0 1 δt
0 0 1



 , b =





δt3/6
δt2/2
δt



 , c =
[

1 0 −z/g
]

and tries to minimize the cost function J by using the input and K such that,

uk = −Kxk +
[

f1 f2 . . . fN
]







prefk+1
...

prefk+N







where
K = (R+ bTPb)−1bTPA

fi = (R+ bTPb)−1bT (A− bK)T∗(i−1)cTQ

This calculation is only done once and it is used for the Preview Controller.
When all the optimal values have been calculated, the state transition equation
can be used to compute the next CoM position, velocity and acceleration,

xk+1 = Axk + buk

It is important to note that pref =
{

prefk+1, . . . p
ref
k+N

}

will always be the same

because pref will always be in the supporting foot of the kick and it will not
move. Therefore, it will save computation time since pref is a constant when
computing uk. When uk is computed and we find the next CoM, then we need
to move the CoM to next position. This will be discussed in the next section.

4 Analytical Approximation for Inverse Kinematics

Fig. 4: An approximation of the center of mass kinematic for Inverse Kinematic model. l1
is the length from the ankle to the hip and l2 is the length from the hip to the center
of mass. This is approximation is done to the frontal plane and saggital plane. The hip
pitch (θ2,pitch), hip roll (θ2,roll), ankle pitch (θ1,pitch) and ankle roll (θ1,roll) are adjusted
according to the Inverse Kinematic model.

In order to move the CoM to the position that was given by the Preview
Controller, an analytical approximation using Inverse Kinematics can be used

to move the joints to the correct position. Since the Center of Mass is not di-
rectly actuated by a specific joint, an analytical approximation can be used. The
position of the CoM can be affected by the leg joints. Let’s assume the CoM is
above the leg joints, then we can approximate the CoM using the hip joints and
ankle joints. In the frontal plane, the CoM can be affected by the hip and ankle
roll. If we approximate the joints and the CoM using a two-link arm [9], then
we can use an analytical solution to move the CoM. The first link of the arm is
the ankle roll joint to the hip roll joint. The second arm is the hip roll joint to
the center of mass. The link of the first and second arm are revolute joints, and
the end effector which is the CoM does not have a joint. The length of the first
arm is the distance from the ankle roll to the hip roll, l1 and the length of the
second arm, l2, is the distance from the hip roll to the CoM. In the frontal plane,
we want our end-effector to get to (y, z). y is the difference between the next
CoM’s y position and the current CoM’s y position. z is the plane that CoM is
constrained on. Now, that the problem is defined, we can use these values to get
the two angles we need, but we first need to get the range from the first link to
the next CoM position in the frontal plane, (y, z),

r =
√

(y − αankle,y) + (z − αankle,z) (6)

With r, the second angle, θ2, can be found. But before computing θ2, we need to
find the angle α that corresponds to the angle formed by l1, l2, and r. Therefore,
we can use the cosine law to get the following,

α = cos−1 l21 + l22 − r2

2l1l2
, θ2 = α± π (7)

Therefore there are two solutions for θ2 but only one can give us the correct
solution because of the balancing constraint placed on the robot. Hence the
correct solution is as follows

θ2 =

{

α− π, if right kick
α+ π, else left kick

To compute θ1, the angle opposite of l2, β, needs to be calculated first. To
calculate β, the law of cosines can be reused and we end up with,

β = cos−1 r2 + l21 − l22
2l1r

, (8)

β gives the angle in the triangle, but the θ1 is the angle between y-axis and
l1. To get this angle, the bearing of the first link to the the next CoM position
is needed,

arctan2(z, y), θ1 = arctan 2(z, y)± β (8)

There are also two solutions for θ1, and a condition is given to decide which on
to use,

θ1 =

{

arctan 2(z, y)− β, if right kick
arctan 2(z, y) + β, else left kick

The same needs to be do in the sagittal plane. The only difference in the
sagittal plane, is that instead of hip and ankle roll, hip and ankle pitch will
be used, and the trigonometric solution is done for point (x, z). When both
calculations are done for the frontal and saggital plane, the current CoM position
can now be inferred from these four joint angles.

5 Kick Trajectory using Cubic Spline

In order to generate kick trajectory, the most trivial case is to change the leg joint
angles until a desired kick configuration has been reached. This is tedious work
and will be suboptimal since the joint space is very large. Another approach is to
use optimization to find key-frame values, but this only works for a set of kicks
and it is not dynamic enough to create any kick trajectory. Therefore, a more
efficient solution is to generate motions using polynomials [14]. Polynomials are a
great solution in robot motion because they can be configured to generate smooth
curves. To generate a polynomial for the kick motion requires constraints such
that the motion generated by the polynomial does not conflict with any unwanted
configuration. The polynomials will not be used in the joint space, but rather will
be used to determine the next position of the swinging foot. When the position
of the foot is determined by the cubic polynomial, the Inverse Kinematic module
will provide the angles for the foot position requested. For the kick motion, two
cubic polynomials are generated. The point where the two polynomials meet is
called the via-point. The purpose of this point will be discussed later. The cubic
polynomial is as follows,

α1(t) = a13t
3 + a12t

2 + a11t+ a10 α2(t) = a23t
3 + a22t

2 + a21t+ a20

In order to generate an arbitrary motion, specific constraints need to be put
upon the polynomials. Since there are two cubic polynomials (i.e. 8 coefficients
/ degrees of freedom), there are 8 constraints. The first constraint is the point of
the first polynomial at t = 0. At t = 0, the kick motion will swing the leg back.
This is called the retraction point. This is the point farthest from the ball. The
second constraint is that the velocity of the first point at t = 0 which is zero. The
third constraint is the the position of the via-point where both cubic polynomials
meet. The via-point is used to determine the height of the kick trajectory. It is
also a very important point because it is where both polynomials meet. Hence,
both polynomials need to have the same position at this point and their velocities
need to match. Moreover, the acceleration at the via point for both polynomials
need to also match. This guarantees a smooth trajectory with C2 continuity. The
last two constraints define the position and velocity of the second cubic spline
at t = tf . The constraints are summarized as follows,

Z

X

Fig. 5: These two polynomials are generated for a front kick. Since the front kick does not
vary on the y-plane, it is two dimensional in the x and z plane. The white circles are the
beginning and end points of the kick respectively. The black circle is the via-point that
constraints the height of the polynomial. The first polynomial is from the first white circle
to the black circle, and the second polynomial is from the black circle to the last white
circle.

α1(0) = [x0, y0, z0] (retraction point)
α̇1(0) = [0, 0, 0]

α1(tvia) = [xtvia , ytvia , hfloor] (constraint on foot from floor)
α2(0) = [xtvia , ytvia , hfloor] (constraint on foot from floor)

α̇1(tvia) = α̇2(0)
α̈1(tvia) = α̈2(0)
α2(tf) = [xf , yf , zf] (contact point)
α̇2(tf) = [0, 0, 0]

Moreover, as shown above, the constraints are defined as vectors because
there needs to be polynomials for the x, y, and z plane. The six cubic polynomials
(two for each plane) will form a parametric curve in R

3. To solve the coefficients
of the polynomials we solve the following system which was created by inputting
the constraint in the polynomial and rearranging terms,













1 tvia 0 0 0
0 0 1 tf t2f
0 0 1 2tf 3t2f

2tvia 3t2via −1 0 0
2 6tvia 0 −2 0

























a12
a13
a21
a22
a23













=















α1(tvia)−α1(0)
t2
via

α2(tf)−α2(tvia)

t2
via

0
0
0















(9)

As seen in (9), a10, a11, and a20 do not need to be a part of the system of
equations because their answer is trivial:

α1(0) = a10 α̇1(0) = a11 α2(0) = a20

Solving (9), gives us the coefficients for our polynomials, but we still are
missing one step. Before we begin solving (9), we need to determine the optimal
via point position. This is discussed in section 6.

6 Model Optimization

Generating a good parameter set is important to attain a good kick. Although
these values can be found empirically, it is a tedious task. We therefore used

the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for model
optimization. The values were optimized and visualized in Webots, which can
be seen as the standard simulation software for NAOqi. The first parameter set
optimized was the time length of the kick and the speed towards the via point.
The second run on the model optimization was done on the time length of the
kick, the speed of the via point, and the via point location in the x, y, z plane.
Although this gave good results, the via point was moved equally proportionally
in 3D space, which resulted in a polynomial where the cubic and quadratic
components were negligible in the specified interval of t. Therefore for the last
optimization run, the via point was moved disproportional in the x, y, and z
plane to generate curves in 3D space.

Run Dimensions Distance (Meters) Num. Eval. Time(ms) Percent X Via Y Via Z Via

seed 0 2.008 0 1180 0.5 0.5 0.5 0.5
1 2 2.124 6516 853 0.46 0.5 0.5 0.5
2 3 2.230 10633 1316 0.53 0.49 0.49 0.49
3 5 2.696 320 2273 0.77 0.1 0.42 0.44

Table 1: Optimization results. The Time column is the duration of the kick. The Percent
column shows the percent of the time spent on the first polynomial. X, Y, and Z Via is the
Via point in 3D space.

Although we got promising results from the optimization, we believe we can
get better results for the optimization by increasing the dimension of the opti-
mization. As you can see in table 1, as we include more parameters, there is an
increase in the distance of the optimal kick as well as a decrease in the number
of generations until convergence. The additional parameters that can be added
are: kick limit configuration (exploring a set of limits on the polynomials that
can generate a good kick), end points of the polynomial, and the time it takes
to get to the retraction point.

7 Experiments

For the validation of our approach, various kicks were generated and data for
the balancing and spline trajectory generation was recorded. Figure 6 (a) shows
the ZMP reference point for a right front kick was 0.03 for x and 0.052 for y
for all preview reference points in the preview controller. Although the x and y
ZMP values varies around the reference points, the error is less than 1 centimeter
which is less than the radius of the foot or support polygon. Furthermore, the
small error accumulated is due to the simplification of the inverse kinematic
model, but it still gives a good approximation to the CoM position. The CoM
position in 6 (b) is very close to the ZMP value because when the robot is
balancing on one foot, it does not generate a force in the x or y axis. This
can be verified in figure 6 (c), which is very close to zero. The graph in 6 (c)
is bounded between −1.5 × 10−4 and 2 × 10−4. Hence, the difference between
the estimated ZMP and the estimated CoM is negligible within working levels of
precision. Although we might be tempted to control the CoM alone and disregard

ZMP because they coincide, we need to notice that if a force is applied to the
robot by another robot, it will generate a force in the x or y axis, which in
turn might make the CoM leave the support polygon, but we can still use the
ZMP criterion to stabilize the robot. In figure 6 (d), and (e), the polynomials
in the x, y, and z plane have been generated and projected in 3D space. The
blue polynomial is the first polynomial and the orange polynomial is the second
polynomial generated, and the union is the via point. As can be observed, the
polynomials are very close to a straight line. This is due to the configuration limit
of the robot. Since the robot operates in a very small space, the coefficients of
the polynomials are very small (less than 1). Therefore, the quadratic and cubic
terms are negligible and the linear term is dominant. In order to get better shapes
for the kick trajectories, we used CMA-ES optimization to generate shapes by
moving the via point from being halfway. The configuration limit of the kick
trajectory can be visualized in 6 (f). A video of the kick engine can be found at:
https://www.youtube.com/watch?v=4fmuqI_CpQw.

(a) (b) (c)

(d) (e) (f)

Fig. 6: (a) The ZMP error between the reference point and the actual ZMP. (b) The
position of the center of mass in x and y. (c) The center of mass velocity. (d)-(e) The
dashed polynomial is generated first. (d) The front kick trajectory in 3D space. (e) The
back kick trajectory in 3D space. (f) The kick limit of the NAO in 3D space.

8 Conclusion

We have developed and implemented a dynamic kick engine that dynamically
balances using a ZMP based preview controller. The preview controller is given
the center of mass position based of the error in the ZMP. In order to move the
center of mass to the correct position, we use a simplified model that consists
of a two link arm. The end effector of the arm is denoted as the center of
mass. The kick trajectory is generated using cubic splines. The knot in the
cubic splines is called the via point, and it is used to control the shape of the
polynomial. The kick was optimized using a simulation software called Webots.
On Webots, we optimized the via point position, the speed to the via point,
and the time duration of the kick. The optimization attained optimal set of

https://www.youtube.com/watch?v=4fmuqI_CpQw

parameters without having to experiment on the robot to find them. These
values were used on the physical robot to verify results.

References

1. Becht, I., de Jonge, M., Pronk, R.: A dynamic kick for the NAO robot. Project
Report, July (2012)

2. Böckmann, A., Laue, T.: Kick motions for the NAO robot using dynamic movement
primitives. arXiv preprint arXiv:1606.00600 (2016)

3. Kajita, S., Hirukawa, H., Harada, K., Yokoi, K.: Introduction to humanoid robotics,
vol. 101. Springer (2014)

4. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K.,
Hirukawa, H.: Biped walking pattern generation by using preview control of zero-
moment point. In: Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE
International Conference on. vol. 2, pp. 1620–1626. IEEE (2003)

5. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3d linear in-
verted pendulummodel: A simple modeling for a biped walking pattern generation.
In: Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ Interna-
tional Conference on. vol. 1, pp. 239–246. IEEE (2001)

6. Katayama, T., Ohki, T., Inoue, T., Kato, T.: Design of an optimal controller for
a discrete-time system subject to previewable demand. International Journal of
Control 41(3), 677–699 (1985)

7. Lengagneua, S., Fraisse, P., Ramdani, N.: Planning and fast re-planning of safe mo-
tions for humanoid robots: Application to a kicking motion. In: Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. pp. 441–
446. IEEE (2009)

8. Müller, J., Laue, T., Röfer, T.: Kicking a ball–modeling complex dynamic motions
for humanoid robots. In: RoboCup 2010: Robot Soccer World Cup XIV, pp. 109–
120. Springer (2011)

9. Murray, R.M., Li, Z., Sastry, S.S., Sastry, S.S.: A mathematical introduction to
robotic manipulation. CRC press (1994)

10. Strom, J., Slavov, G., Chown, E.: Omnidirectional walking using ZMP and preview
control for the NAO humanoid robot. In: Robot Soccer World Cup. pp. 378–389.
Springer (2009)

11. Sung, C.H., Kagawa, T., Uno, Y.: Planning of kicking motion with via-point rep-
resentation for humanoid robots. In: Ubiquitous Robots and Ambient Intelligence
(URAI), 2011 8th International Conference on. pp. 337–342. IEEE (2011)

12. Vukobratović, M., Borovac, B.: Zero-moment pointthirty five years of its life. In-
ternational Journal of Humanoid Robotics 1(01), 157–173 (2004)

13. Wenk, F., Röfer, T.: Online generated kick motions for the NAO balanced using
inverse dynamics. In: Robot Soccer World Cup. pp. 25–36. Springer (2013)

14. Williams, R.L.: Simplified robotics joint-space trajectory generation with a via
point using a single polynomial. Journal of Robotics 2013 (2013)

15. Xu, Y., Mellmann, H.: Adaptive motion control: Dynamic kick for a humanoid
robot. In: Annual Conference on Artificial Intelligence. pp. 392–399. Springer
(2010)

16. Yi, S.J., McGill, S., He, Q., Hong, D., Lee, D.: Walk and kick motion generation for
a general purpose full sized humanoid robot. In: Workshop on Humanoid Soccer
Robots, IEEE-RAS International Conference on Humanoid Robots (Humanoids).
IEEE (2014)

	An Omni-directional Kick Engine for Humanoid Robots with Parameter Optimization

