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Abstract. In the last 20 years there have been major advances in au-
tonomous robotics. In IoT (Industry 4.0), mobile robots require more
intuitive interaction possibilities with humans in order to expand its field
of applications. This paper describes a user-friendly setup, which enables
a person to lead the robot in an unknown environment. The environment
has to be perceived by means of sensory input. For realizing a cost and re-
source efficient Follow Me application we use a single monocular camera
as low-cost sensor. For efficient scaling of our Simultaneous Localization
and Mapping (SLAM) algorithm, we integrate an inertial measurement
unit (IMU) sensor. With the camera input we detect and track a person.
We propose combining state of the art deep learning with Convolutional
Neural Network (CNN) and SLAM algorithms functionality on the same
input camera image. Based on the output robot navigation is possible.
This work presents the specification, workflow for an efficient develop-
ment of the Follow Me application. Our application’s delivered point
clouds are also used for surface construction. For demonstration, we use
our platform SCITOS G5 equipped with the afore mentioned sensors.
Preliminary tests show the system works robustly in the wild. 1
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1 Introduction

1.1 Motivation

Robotics navigation and control is a complex task to deal with. Robust detec-
tion and tracking of people in autonomous robotics applications is a key task
nowadays. It is also essential to intuitive human machine interaction. Our aim
is providing an easy to implement, flexible and adaptable application for this
task. One of our main goals is a robust application for in the wild usage. For
head detection, person tracking and robot navigation there are several projects
1 This work is partially supported by a grant of the BMBF FHprofUnt program, no.
03FH049PX5



providing great and useful solutions. This work combines them to an affordable
complete system that performs very well. The paper is structured as follows:
First, we describe in a broad overview how our application works. Next, we dive
deeper into theory, our approaches and techniques used in the application and
state further work and possible enhancements on these approaches. This is fol-
lowed up by instructions for implementation, hardware and our robot platform
SCITOS G5, produced by MetraLabs GmbH. Finally, we show our application
in early experiments.

1.2 Related Work

Different approaches on person detection and tracking involving autonomous
robotics were proposed over time, such as [2, 18]. However, they often lack sim-
plicity and require multiple sensory inputs. For sensory input, we opt for us-
ing only a single low-cost consumer monocular web cam, in our case the Sony
PlayStation Eye Camera and a common IMU chip package, a Bosch BNO055.
This way our application can be deployed on existing setups inexpensively. The
approach of the head detector used in our work is inspired by the success of
deep Convolutional Neural Networks (CNN). First successfully introduced by
Krizhevsky [15] by winning the LSVRC-2012 ImageNet challenge, CNNs dom-
inate in all vision task challenges today. Convolutional Neural Networks is a
machine learning approach for computer vision tasks and were already used for
head detection by [26]. Our detector is based on the Single Shot Detector (SSD)
from Wei Liu [16], which is more advanced than Faster R-CNN [21]. Our internal
research group is involved in SLAM [22] and face recognition experiments, so we
have knowledge transfer from our work to other projects.

1.3 Purposed Solution

The main steps in our workflow to realize the Follow Me application are shown
in fig. 1: First, we take a 2D camera image frame and use it for head detection
via a CNN and create bounding boxes. We implement calibration and scal-
ing to real-world dimensions for LSD-SLAM algorithm on embedded hardware
NVIDIA Jetson TK1 developer kit by utilizing a Bosch BNO055 IMU. This
setup allows us to generate real-world scaled point clouds. The point cloud is
reduced to a volume of interest including only the tracked head. To create a
surface out of these points we use a Poisson surface reconstruction algorithm.
We propose using the results of those processes to construct the points for the
head and calculate the head position with respect to the current robot position.
We transform the CNN based 2D head detection to 3D world space coordinates.
To improve the world space coordinates, we show a workflow to fuse the SLAM
and CNN estimated position and track a person. Finally, the positional data
is sent to motion controller feedback algorithms. The main contribution of this
work is a robust Follow Me application based on deep learning CNN, SLAM and
a 3D morphable face model (3DMM) [11]. We observe that a fusion of 2D based
and 3D SLAM based world space coordination improves the estimation between



the robot and the person. The core novelties of the paper are: (1) Follow Me
using a single monocular low-cost webcam (2) a CNN based surround head de-
tection; this means the occiput is also recognized (3) Taking advantage of scaled
SLAM with IMU to improve distance estimation and fusion (4) Robust tracking
of person instances using 3D points and 2D transformation fused.

Fig. 1: Workflow of Follow Me: 2D image used for parallel CNN head detection
and LSD-SLAM point cloud generation. Point cloud reduced to volume of head
based on CNN bounding box. 3D surface reconstruction and 2D transformation
for head world space coordinates. Fusion of SLAM and CNN head position.
Tracking and motion control.

2 2D CNN-based and 3D SLAM-based Person Tracking

2.1 Single Shot MultiBox Convolutional Neural Network based
Head Detector

Our detector CNN uses an SSD approach from Wei Liu [16], which needs only a
single forward feed for detection of heads on a 2D RGB image, recorded with a
low-cost webcam. Several feature maps with different scales are used. Each box
predicts the shape and the confidence of the class. Based on this information the
bounding boxes are estimated. The base for the network is a VGG-16 network
[24]. The feature layers for the feature maps are connected to the end of the
network. This results in a high improvement of the speed.

2.2 Training and Evaluation

For training the network the HollywoodHeads Dataset [1] is used. This dataset
contains 224,740 video frames from Hollywood movies with annotations of bound-
ing boxes of the heads. Some examples from the data set are shown in fig. 2 (a,
b). The data set is split in a training set which contains 216,719 frames, a val-
idation set which contains 6,719 frames and a test set, which contains 1,302



frames. This split is proposed in [26]. The Caffe framework [12] is used for train-
ing and deployment. The training was performed on a GeForce GTX 1060 6GB
on Ubuntu 14.04 LTS. We achieve 59.7 % Mean Average Precision (mPA). Field
tests show, that the SSD detector is stable, even under harsh conditions, as fig. 2
(c, d) shows.

(a) (b)

(c) (d)

Fig. 2: Example frames from the HollywoodHeads data set [1] (a, b) and detec-
tions results of our trained SSD network (c, d)

2.3 Coordination Transformation

The CNN detection takes place in 2D. The position of the head in world space
coordinates plays a major role in robust tracking. Persons crossing can cause
problems e.g. when people cross each other at different distances from the cam-
era. To avoid this, a transformation of the detection coordinates in the 2D image
into 3D world space coordinates is done. This improves the tracking and enables
differentiating between crossing tracks in 2D image coordinates when using 3D
world space coordinates. The knowledge of the size of the bounding box from SSD
is used to estimate the distance of the head in real world coordinates. Therefore,
a data series is recorded representing the distance in relationship to the area of
the bounding box. Based on this data a function is estimated which approximates
the relationship between the area of the bounding box in pixels and the distance
in world space cm: zworld = 15022 ·area−0.525. For the estimation of the x and y
in world space, zworld is used in calculations xsize = 2 · zworld · arctan(αFoV /2)
and likewise ysize = 2 · zworld · arctan(αFoV /2) · 2/3, which are depended on the
used camera sensor parameters. Based on the area, relations of pixels in the im-
age to the size in real world in cm are xrelation = xsize/xcamRes and yrelation =
ysize/ycamRes. The real world coordinates are calculated based on relations be-
tween pixels in the image to the size in real world and the image coordinates:



xworld = xrelation ·ximagePos−xsize/2 and yworld = yrelation ·yimagePos−ysize/2.
Finally, we have a world space position [xworld, yworld, zworld] with the camera
sensor centre-point as origin.

2.4 SLAM-based 3D Head Extraction

Most positioning, orientation and odometry systems provide only pose data rel-
ative to the system start point. It is necessary to accurately define the initial
position and scale before motion starts in order to integrate the SLAM system
into other robot systems interacting with the environment. Several SLAM al-
gorithms have been developed to build a map based on the key-frames with
loop closure detection and to propose a way to identify the current location of
the robot [4, 19, 20]. The map can be used to calculate the scale factor of the
camera path. Similar results can be achieved by combining monocular camera
data with other sensors [5, 8, 25]. There are many existing SLAM algorithms
described today. Most of them are dealing with standard navigation tasks (e.g.
building key-frame based maps, loop closure detecting or current position local-
ization). One of the more popular approaches is PTAM [13,14] and its variations,
such as LSD-SLAM [4, 7] and ORB-SLAM [19, 20]. A significant challenge for
monocular SLAM systems is the problem of estimating scaled camera positions.
Without scaled metric data, the SLAM output cannot be integrated with other
robotic systems relying on accurate environmental information. That is why
some approaches use RGB-D or stereo cameras [3, 17]. Depth maps generated
from RGB-D cameras can be used to find scaled metric camera positions. Ad-
ditionally, RGB-D hardware makes 3D environment reconstruction possible [3].
This approach is more expensive than monocular systems. However, scaled envi-
ronmental information can be obtained if the monocular camera data is combined
with other sensors, e.g. laser scanners, etc. The PTAM algorithm uses an altime-
ter based solution [6]. PTAM does not provide scaled 3D environmental data,
though. The authors are not aware of a monocular SLAM system that provides
a scaled point cloud representation of the environment aligned to some global
coordinate system.

2.5 Spaces Alignment Problem and Solution

The main steps of LSD-SLAM and real-world scale and orientation synchroniza-
tion are taken during the LSD-SLAM algorithm initialization period. We should
remember, that LSD-SLAM systems without spacial equipment (such as an ex-
ternal IMU sensor) have no information about the real-world camera position,
orientation and surrounding object sizes. The LSD-SLAM camera position and
orientation estimating process is based on tracking special points in a particular
frame. It is necessary to have depth information for them. Initially, it uses ran-
dom numbers for the depth hypotheses, i.e. d ∈ [0, 1] random numbers for each
feature point in the first frame. Also, for the first frame camera position and ori-
entation the initial position vector [0, 0, 0] and quaternion [1, 0, 0, 0] are used.
This random distance is used for camera tracking and for defining the estimated



camera position and orientation. At the next step the calculated camera position
and orientation error is used in the triangulation task to update the point cloud
depth information. After some iterations, the calculation results converge into
an optimal combination of depths and camera tracking data. It is obvious that
after the initialization period the estimated point depths and camera position
and orientation data have unpredictable values. The initialization time and fi-
nal distance scale factor depend on a random distribution of initial hypothetical
depths. Now the task can be formulated: we are looking for a combination of
rotation, scaling and translation factors that will map LSD-SLAM estimated co-
ordinate system space to the IMU sensor coordinate system. It is very important
to have the transformation from LSD-SLAM space to the sensor space, because
the IMU sensor coordinate system is aligned to the gravity vector. That means
it is aligned to the world coordinate system. It makes it possible to use an oc-
tree optimized 3D model representation for the estimated point cloud. In order
to find a solution, first of all, it is necessary to formally define the input data.
LSD-SLAM estimates data as a set of key-frames which describe camera position
and orientation with a set of points or coordinates (or estimated distance from
the camera to each feature point). This will be denoted as L = {T, P} where
T ∈ Sim(3) such that: T = (sR t, 0 1) with R ∈ SO(3), t ∈ R3, s ∈ R+. The
Sim(3) group represents transformation and scaling in a three dimensional space.
Here s is a scale factor and t a translation vector in 3D space. R is an element of
the SO(3) group that represents rotation. Each element of the SO(3) group can
be represented in several different forms (e.g. rotation matrix, quaternion or vec-
tor and angle combination). T represents the camera transformation estimated
by LSD-SLAM. Furthermore P = { p = 〈 u, v, d 〉 | u ∈ Z+, v ∈ Z+, d ∈ R+ }
where [u, v] are the pixel coordinates on the frame and d is a distance from
the camera position to the point. In order to calculate 3D coordinates of the
points in a key-frame point cloud, it is also necessary to have the intrinsic cam-
era matrix: M = [fx 0 cx, 0 fy cy, 0 0 1] where: f = [fx, fy] - camera focus
distance per axis. c = [cx, cy] - image position of the principle axis in pixel
coordinates. Let X = { x | x ∈ R3 } represent P in the 3D space of the LSD-
SLAM coordinate system. It can be calculated by mapping: δ : P→ X. Where δ
is: X = δ( L,M ) = T [(u− cx) · d/fx, (v − cy) · d/fy, d, 1, ]. We are receiving
additional information from an external sensor, in this case an IMU. For LSD-
SLAM estimated data, we will use set S, which describes sensor measured data
S = {T ′

, P
′}. For IMU sensor measured data T

′ ∈ Sim(3) is a transformation
into the real world metric coordinate system and P

′ ≡ ∅ is an empty set, because
the IMU model do not have any information about the 3D real world geometry.
Because P

′
is empty,X

′
cannot be obtained. As described in the previous subsec-

tion, we are looking for a combination of rotation, translation and scale conver-
sions from L to S. Formally that conversion combination can be represented as
an element of Sim(3): Λ = (sR t, 0 1) with R ∈ SO(3), t ∈ R3, s ∈ R+. Finally,
we can formalize our task as follows: we are looking for a mapping Λ : L→ S. In
order to find Λ we can only use the LSD-SLAM camera position and orientation
and then relate it to the IMU sensor measurements. As already mentioned P

′



(hence X
′
as well) is an empty set for the sensor coordinate system. Therefore

the equation for finding Λ becomes: Λ∗ := argmin(s,R,t)

(∑∥∥∥ T ′ − Λ× T
∥∥∥2)

The element usage is based on the fact that T and T
′
are part of the Sim(3).

The solution to this equation is discussed in detail in [9,10]. And so, we are able
to reconstruct the point cloud in the IMU sensor coordinate system. With the
calculated Λ∗, we can transform the LSD-SLAM estimated point cloud to the
IMU sensor coordinate system: X

′ ≈ Λ∗ ×X ≈ Λ∗ × δ(L, M)

Inertial Measurement Unit Calibration Integrated in our IMU there are
three gyroscopes and three accelerometers that are orientated along the three
axis. We need to calculate continually the current position, orientation and track
the motion of the robot for each of the six degrees of freedom x, y, z, θx, θy, θz. A
disadvantage of an IMU in general is that they suffer from accumulated error. In
our experiments, it is a problem to calculate a linear acceleration in a defined time
period and additionally there is a misalignment and non-orthogonality error. To
improve the results of IMU sensors and correct misalignment, we strap the IMU
onto a stepper motor and calibrate it in relation to different angles from 0◦ to
360◦ by tracking the sensor values of each step.

Extracting Point Cloud of the Head While moving we will get varying
camera positions from where every frame is tracked. The first camera position
defines a key frame; any further position delivers a current tracked frame. We
extract feature points from the key frame to reconstruct the point cloud and
identify the feature points on the tracked frame. This progress is supported
by camera calibration parameters which are estimated by the camera position
and orientation. These calibration parameters describe a calculated view of the
frame, in which we use image and head detection for the current tracked frame.
The whole camera volume is cropped to a volume of interest where the head is
positioned and we use the z distance of each point to reduce the point cloud
to an extraction of the head. In summary, we propose combining the camera
calibration parameters, all the data from LSD SLAM (position and orientation)
and the bounding box of head detection CNN to get our volume of interest in
order to reduce unnecessary information and get an extracted point cloud, as
shown in fig. 3.

2.6 Poisson Triangulation based Estimation of the Head Position

There are several methods for surface reconstruction. Some of these can be di-
vided into global and local fitting procedures. Global fitting procedures are in
implicit form and can be represented as the sum of radial basis functions (RBFs)
at the centre of the points. The RBFs are not linked to the data points but to the
surrounding space. Local fitting techniques use the distance from tangent planes
to the next point. The Poisson surface reconstruction combines both methods.
It uses the Poisson equation, which is also used in other applications of physics.



Fig. 3: Simplified example: Camera frustum (red), volume of interest by CNN
bounding box (yellow), points in volume of interest (green), other points in grey

The algorithm used here aims to reconstruct a watertight model. Experiments
shows a search radius of less than 2 generates dents in the surface from volume
of interest. The optimum seems a radius of 4. Results of the Poisson Triangula-
tion method are feasible. It is possible to produce a waterproof mesh. Large holes
can be closed in the process, like in fig. 4. We propose applying real-time 3D

(a) (b) (c)

Fig. 4: Demonstration of a surface reconstruction (c) using the Poisson method
on a point cloud (b) generated from a dummy head (a)

face fitting via the Surrey face model ’s first component, the 3D morphable PCA
shape model, and its landmark annotations onto the generated mesh. Further
information are available in [11].

2.7 Fusion of Positional Data

From the fitted 3DMM, we select the nose tip landmark as coordinate for the
tracking z position. In case the occiput is captured, in our first implementation
we accept a suboptimal fitting, since the nose tip landmark is still on the surface
and therefore a good estimate of the head position. We advocate a simple fusion
of the SLAM 3D position from 3DMM fitting landmark PSLAM and the CNN
2D transformed world space position PCNN in form of: Pfused = α · PSLAM +
β · PCNN with Pi = [x, y, z] and α+ β = 1. Pfused is input to a Kalman filter



described in section 2.8. Optimal values for α and β depend on actual hardware
implementation and should be determined in experiments.

2.8 Global Nearest Neighbour (GNN) Tracking

After the detection in 2D and 3D, the fused world coordinates of the head are in-
put to a tracking algorithm. For single object tracking a combination of a Kalman
filter and global nearest neighbour data assignment is used. This can extend it to
a state of the art joint probabilistic data-association filter algorithm [23], which
enables a robust multi-object tracking. In our first implementation, a single track
of the GNN tracking algorithm is used, which is sufficient. Every iteration the
tracker receives the detections from the SSD detector CNN transformed in 3D
coordinates. First the tracker needs to be initialized. Therefore, a tracker ob-
ject must be created. For this purpose, a detection is selected, which should be
tracked. This can be externally requested from the user. The tracker object ini-
tializes a Kalman filter [27] with the coordinates of the selected detection. The
state transition function of the Kalman filter is based on Newton’s equations
of motion with a constant acceleration of the system. For implementation Fil-
terPy, a Kalman filtering and optimal estimation library in Python is used. The
Kalman filter predicts the position of the tracked object at the next time step
based on the process model. The Gaussian probability is calculated between the
predicted position and the current detections. To limit this range a gating is
applied. The size of the gate increases with increasing covariance of the Kalman
filter. The detection with the highest probability inside the gate is assigned to
the tracker. The tracker uses the detection to update the Kalman filter. A live
counter for the tracked head is updated based on whether a detection could be
assigned to the tracker or not. This process is iteratively repeated until the track
is lost or a new track is requested.

3 Implementation and Testing

The following describes the hardware and software specifications and technology
for the person tracker and their implementation. The hardware used in for the
application is an Intel i7 2620m with 8 GB of RAM and GeForce GTX 1060
with 6 GB VRAM. For image capturing a Sony PlayStation Eye Camera is used,
with a framerate of 60 frames per seconds and low motion blur. The resolution
of 640x480 satisfies the required resolution for the detector CNN. The software
implementation is written completely in Python and takes place on Ubuntu 14.04
LTS. For array implementations and operations, we use Numpy. The SLAM part
runs on a NVIDIA Jetson TK1 developer kit with a Bosch BNO055 IMU.

User Interface: The user interface of the head tracker is implemented with
OpenCV. The user interface shows the current captured scene. All detections
are marked with bounding boxes and their position in world space coordinates.
To trigger a tracking request, a user simply clicks inside the target bounding



box. Alternative implementation may allow for voice or gesture based selection
of a bounding box by ID. The tracked head is marked with a different colour, to
distinguish the detection bounding boxes. Figure 5 shows the implemented user
interface.

Fig. 5: User interface of the head tracker. Detection bounding boxes in green,
tracking target in red. Displayed over each is the head position in world space
coordinates in relation to the camera sensor.

Robot Motion Control: The final positional data P from the Kalman filter
prediction is sent to the robot’s motion controller feedback algorithm, which
calculates rotation angle and distance to point P with respect to the robot’s
coordinate space. The feedback algorithm is set to keep a fixed offset to the
target.

Testing: Figure 6 depicts a video image sequence. In the upper left corner,
the User Interface is overlaid. The scenery is shot in third person to provide a
holistic view of the demonstration. In the image sequence, several persons cross
and occlude the tracked person in front of the robot in between person and robot
and behind the person. Notice the tracking stays on the target person.

4 Conclusion

We have implemented an early working Follow Me application with the poten-
tial to achieve better results than existing solutions which use more expensive
sensors. Our system is still work in progress, though. Further tasks aim to im-
prove stability in the wild, while keeping low budget hardware. With SLAM, we
can create a map of the environment to improve navigation and obstacle avoid-
ance. We suggest upgrading the workflow with the use of blend shapes in the
3D morphable face model. Blend shapes are simply described by the difference
between two three dimensional objects. Those objects represent human faces



Fig. 6: Video image sequence of the Follow Me application

with different expressions. After the registration of the face with the method of
a 3D morphable model (3DMM) [11] we can do further normalization via blend
shapes and eventually enable a more stable face recognition.
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