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Abstract. Many rescue robots are reconfigurable, having subtracks (or
flippers) that can be adjusted to help the robot traverse different types
of terrain. Knowing how to adjust them requires skill on the part of
the operator. If the robot is intended to run autonomously, the control
system must have an understanding of how the flippers affect the robot’s
interaction with the ground. We describe a system that first learns the
effects of a robot’s actions and then uses this knowledge to plan how to
reconfigure the robot’s tracks so that it can overcome different types of
obstacles. The system is a hybrid of qualitative symbolic learning and
reinforcement learning.
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1 Introduction

Driving a wheeled robot on flat ground is relatively straightforward once the
robot has a map of its environment. The operator only needs to control the
steering and speed. Driving a tracked vehicle over rough terrain is much more
difficult, especially if the vehicle has subtracks, or flippers, because the operator
must make decisions about the configuration of the flippers, as well as steering
and speed. Thus, subtracks give the robot greater terrain traversal capabilities
at the expense of greater control complexity. Reconfigurable robots are used
commonly in urban search and rescue, but are mostly tele-operated. However,
remote control is impossible when there is a loss of communication. Therefore,
rescue robots need at least enough autonomy to be able to navigate out of a radio
dropout zone. The goal of this research is to develop an autonomous driving
system for reconfigurable robots. Since the interactions of the robot with the
terrain in a disaster site are extremely difficulty to predict, we use a learning
system to build a model of how control actions, including changing flipper angles,
affect the robot’s state. Once we have the model, the driving system can plan a
sequence of actions to achieve the desired goal state.
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An important requirement is that the learning system must be able to acquire
the model in a small number of trials. A naive application of reinforcement
learning [22], which is commonly used for such tasks, may need thousands of
trials, which would be very slow and eventually break the robot. Therefore, a
more economical approach is required. When humans learn a new skill, they
are almost always guided by some knowledge of the domain. For example, when
learning to drive a car with a manual gear shift, an instructor tells the student
something like, “gradually depress the clutch while releasing the accelerator,
then shift the gear lever and depress the accelerator, at the same time releasing
the clutch”. If the student was required to deduce this sequence by trial and
error, this would take a very long time. However, armed with the instructor’s
hints, the student only needs to learn how to make this plan operational, by
learning how to synchronise the actions so as not to stall the car.

In this scenario, the student has been given a plan the describes the cor-
rect sequence of actions, but leaves out the numerical details, which must still
be learned through trial and error. However, knowing what actions to perform
greatly reduces the number of trials, as now the student only needs to refine a set
of parameters within a given envelop. We adopt a similar approach to building
a control system for driving a rescue robot. A planner produces a sequence of
actions and reinforcement learning system performs the parameter refinement.

The planner requires models of the actions the robot can perform. That is, it
must know the preconditions and effects of each action. These may be given by
an instructor, as above for learning to drive a car, or the models may, themselves,
be learned. During a “pre-training” phase, the robot performs random actions,
observing the robot’s state before and after each action. These observations
become training examples for a system that learns a qualitative model of the
actions. A qualitative model is like the instructor’s explanation. It describes each
action at an abstract level but does not specify exact numerical values for any
parameters. This two stage learning process, acquiring an approximate abstract
model, followed by reinforcement learning to refine parameters, greatly reduces
the overall search space, and therefore reduces the number of trial required to
learn a new skill. However, it is possible that the learned qualitative model is
incorrect, in the sense that it does not provide the constraints needed to learn
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Fig. 1. The Negotiator robot reversing up a high step
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an operational behaviour. In this case, system acquires more training data to
refine the qualitative model. Thus, it is a closed-loop learning system that can
continuously improve its behaviour. Closed-loop learning is the main focus of this
paper, but we must first explain the qualitative representation of actions and how
these are used for planning. We then describe how the qualitative models are
acquired by a symbolic learning system and how reinforcement learning refines
action parameters. Experimental results are presented that demonstrate that by
closing the loop in the learning system, errors from a single pass can be corrected.

2 Qualitative Representation of a Rescue Robot

The experimental platform that we use is an iRobot Negotiator, shown in Fig-
ure 1 climbing a step. In this case, the step is too high for the robot to climb
with the flippers forward, since they are not long enough lift to robot over the
step. Instead, the robot reverses up to the step and uses the flippers to raise
the body, which is long enough to reach over the edge of the step. The robot’s
planning system should be able to reason about the geometry of the vehicle and
make appropriate decisions about what sequence of actions will achieve it’s goal.
To do so, the planner must have a model of how actions affect the robot and its
environment. The model does not need to be highly accurate for the planner to
get the right sequence. An approximate qualitative model will suffice.

The qualitative model is based on Kuiper’s QSIM [8] but is extended so that
it can be used for planning. QSIM represents the dynamics of a system by a
set of qualitative differential equations (QDE). An example of a model for this
domain is shown in Figure 2. The graph shows the relationship of the angles of
the robot’s body to the floor, θb, and the flipper angle, relative to the body, θf .
The relation, M+(θf , θb), indicates that if one of the arguments increases (θf ),
the other also increases (θb). The relation, M−(θf , θb), says the that when one
variable increases, the other decreases, that is, they change in opposite directions.
The const(θb, 0) relation states that θb remains steady at 0.

Each segment in the graph represents an operating region, that is, a region of
the state space in which one model holds. As the flippers rotate clockwise through

✓b

✓f

const (✓b, 0)

M+ (✓f , ✓b)

M+ (✓f , ✓b)

M� (✓f , ✓b)

Fig. 2. Qualitative Models for the Negotiator Robot, describing the relationship be-
tween the angle of the flippers, θf , and base, θb, through four operating regions.
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360◦, the body is raised and lowered, while the flippers are angled below the body,
but have no effect when they are above the body. If the flippers are rotated anti-
clockwise, they can raise the body. To accomodate different operating regions,
we extend the QSIM notation so that each QDE has an associate guard, which
is the condition under which that QDE holds.

Guard→ Constraint (1)

Since a QDE does not specify a numerical relationship between variables, we
regard a QDE as a constraint on the possible values of the variables. For example,
in a particular region, if the flipper angle decreases, the body angle increases.
QSIM was originally intended to perform qualitative simulation. That is, given
an initial condition, QSIM estimates how the system’s state evolves over time. A
state in QSIM is represented by the qualitative values of the variables. However,
a qualitative variable does not take on a numerical value. Instead it’s value is a
pair: magnitude/direction, where the magnitude may be a fixed landmark value
or an interval, and the direction is one of increasing, decreasing or steady. For
example, the robot’s position may be given by x = 0..xstep/inc, which states
that the x position of the robot is between its initial position and the position
of the step, and its value is increasing. A set of transition rules specifies how one
state evolves into the next. For example, when the robot reaches the step, the
position becomes x = xstep/std. A detailed explanation is given by Wiley [26].

3 Planning with Qualitative Models

QSIM has no concept of an action, which is needed for planning. We extend
the QSIM representation by distinguishing certain variables as control variables,
whose values can be changed by the planner. A change in a control variable cor-
responds to an action. For example, changing the flipper angle, θf , corresponds
to the motor action that moves the flipper. Like classical planning, given an
initial state and a goal state, the qualitative planner searches for a sequence of
actions that leads to the goal state. We briefly describe the planner below, but
details of the implementation are given elsewhere [27, 28].

Qualitative planning differs from classical planning and numerical simulation
because the variables can specify a range of values. Therefore, a qualitative state
can be thought of as defining constraints on regions of valid quantitative states,
that is, where the variables take on specific values. For example, a qualitative
state may be x = 0..xstep/inc, θb = 0/std, v = 0..max/std, θf = 0..90/std, which
describes the robot driving up to the step. To find a sequence of actions the
qualitative planner must propagate the constraints from the initial to the final
state. Therefore, planning can be seen as a constraint satisfaction problem. We
take advantage of this, translating the planning problem into an Answer Set
Programming (ASP) problem [4] and using the Clingo-4 solver [5] to generate
the plan, described in [27].

The search space for the the qualitative planner is considerably smaller than
the search space for the corresponding continuous domain. This can be seen from
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the previous observation that one qualitative state covers a region of quantitative
states. Thus, qualitative planning is reasonably efficient in finding a sequence
of actions. However, these actions are only approximate, in the same sense as
the driving instructor’s plan for changing gears. In this case of the robot, as
it approaches an obstacle, the plan may say that the flippers should be raised,
but not by how much. We will see in Section 5, that “how much” can be found
by reinforcement learning, but for this to be efficient, i.e. require only a small
number of trials, the planner must pass on its constraints to the reinforcement
learning system.

In addition to the sequence of actions, the planner generates the state tran-
sitions caused by those actions:

s0
a0−→ s1

a1−→ s2 → . . .
an−−→ sg

Thus, for each action, we have the preceding and succeeding states. As these are
qualitative states, they effectively specify the preconditions and postconditions
of the action. Thus, when the reinforcement learning system searches for the
angle to set for the flippers, it must only search with the constraints of the pre
and post conditions. In the following sections we explain how the qualitative
model is learned and then how reinforcement learning is used to find operational
parameters for the actions generated by the planner.

4 Learning a Qualitative Model

To learn a qualitative model of the robot, the system must acquire samples of
the robot’s interaction with its environment. In the experiments described in
Section 6, a human operator drives the robot, performing random actions. This
could equally be done by the robot “playing” by itself. Each time an action is
performed, the before and after states are recorded so that the changed effected
by the action can be determined. An example of flipper actions is shown in
Figure 3. The figure also shows qualitative relations induced by Padé [29]. This
systems uses a form of regression, called tubed-regression, to find regions of a
graph where neighbouring points have the same qualitative relation. In Figure 3,
Padé has identified regions where the body angle increases with the flipper angle,
decreases, or remains steady. In this case, the binary relation between the angles
has been rewritten in functional form so that the body angle is dependent on
the flipper angle. Note that this plot corresponds to the graph in Figure 2.

The data show that there are several operating regions where these relations
apply. Recall that we express the qualitative model as a set of rules, whose
left hand side specifies the operating region and the right hand side give the
qualitative constraints (Equation 1). These rules can be automatically generated
from the graph by applying a symbolic rule learning system or decision tree
learner. In this case, we use Quinlan’s C4.5 [18]. A problem with this is that
classifier learning systems usually require negative examples, as well as positive
examples. To accommodate this, we make a kind of closed world assumption
where the space outside the sampled area is assumed to contain only negative
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Fig. 3. Body angle versus flipper angle from actions

examples. Thus, null values are randomly added to the C4.5’s training data so
that it can induce a decision tree in which the conditions in the intermediate
nodes specify the operating region where the qualitative relation in the leaf node
applies. Figure 4 shows the decision tree induced from the flipper data. Since
the training data are noisy, the decision tree is not as clean as a model that a
human might write.

With the qualitative model represented by the decision tree, the planner can
determine the qualitative state of the system. QSIM’s transition rules, mentioned
in Section 2, tell the planner what possible next states are reachable depending
on which action is applied in the current state. With this information, the planner
can search for a sequence of actions that will achieve its goal.

5 Refining Actions by Reinforcement Learning

The actions generated by the planner are qualitative. For example, to climb a
low step, the plan may indicate that the velocity should be forward, non-zero
and the flipper angle should be between 0 and 90◦. To find values of velocity
and flipper angle that actually work, the robot must perform some trial and
error learning. Figure 5 illustrates this process. For each action generated by
the plan, the robot has many options for executing that action (e.g. selecting an
angle between 0 and 90◦). Through trial and error learning, it must discover the
parameter settings that will result in the robot achieving its goal.

Parameter refinement is setup as a Semi-Markov Decision Process (SMDP)
over Options [23]. In a SMDP, time is continuous and actions have a duration,
which may be of variable length. The robot may try to select a set of options, that
is, numerical control value settings, that will work, called a satisficing solution,
or it may try to find settings to achieve an optimal solution. Which type of
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theta_b<=-5.072

| theta_f<=-178.415: Q(+theta_f)

| theta_f>-178.415: Q(null)

theta_b>-5.072

| theta_b<=1.628

| | theta_f>17.279: Q(null)

| | theta_f<=17.279

| | | theta_b<=-2.772: Q(+theta_f)

| | | theta_b>-2.772: Q()

| theta_b>1.628

| | theta_f<=133.524

| | | theta_b>18.704: Q()

| | | theta_b<=18.704

| | | | theta_f<=-10.273: Q(null)

| | | | theta_f>-10.273

| | | | | theta_f<=98.500: Q(+theta_f)

| | | | | theta_f>98.500: Q(null)

| | theta_f>133.524

| | | theta_f<=154.558: Q(-theta_f)

| | | theta_f>154.558: Q()

Fig. 4. The C4.5 decision tree

solution is found depends on the reward function that is set. For a satisficing
solution, the reward is simply 1 if the plan succeeds and 0 if it fails. To find
an optimal solution, a cost function must be defined. Here, we only consider
satisficing solutions, but optimal solutions are treated in [26]. The robot repeats
trials, updating its policy according to its reward, until a solution is found.

The unique part of this process is how the SMDP is constructed from a plan.
First, the ranges for all continuous variables must be discretised for the SMDP
algorithm. This corresponds to the intervals in the qualitative model being split
into a set of smaller intervals. So we know distinguish between a quantitative
state description, where all the variables are continuous, a qualitative state de-
scription, as described in Section 2 and a discretised state representation, which
is similar to the BOXES representation [11], commonly used in reinforcement
learning. For each action, the qualitative states satisfying the pre-condition and
post-condition are required. Options are formed from every combination of dis-
cretised states that are subsets of the qualitative states. QSIM constrains a vari-
able’s rate-of-change, as well as its magnitude. If the qualitative state satisfying
the post-condition has an increasing rate-of-change, its quantitative value must
increase during the option, likewise for decreasing or steady rates-of-change. Only
options that satisfy the rates-of-change constraints are added to the SMDP.

Once the system has found the available options, it can perform its trial and
error learning to turn the planning actions into operational motor commands.
However, the quality of the plan depends on the quality of the model that was
induced from the original training data, which was randomly sampled in the
beginning. If the sampling does not yield sufficient training data in the regions
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Fig. 5. The planner gives an approximation of actions, (yellow region) that must be
refined by trial and error learning into precise motor actions (arrows).

Table 1. Training data sets used in the experiments.

Data Set Number of Duration Sampling Frequency
Examples (seconds) (seconds per sample)

Low step 1290 129.1 0.1
High step 2740 280.2 0.1
High step (Generated) 250 5.3 0.1
Staircase 765 160.1 0.2

of the state space relevant to the task, then the model may be poor, resulting in
inefficient plans. This problem can be reduced by closed-loop learning.

6 Closed-Loop Learning and Experiments

The learning process begins with the collection of training examples for learning
the qualitative model. In these experiments, the data were generated by a human
operator instructing the robot to perform mostly random actions. Experiments
were performed for several tasks using the Negotiator robot [26, 28]. These in-
cluded driving over different height steps and climbing a staircase. Of these,
climbing a high step, which requires the reversing manoeuvre, was the most dif-
ficult and is the one we focus on in this discussion. The number of examples for
each task is shown in Table 1. Because the high step requires a complex plan,
we obtained one training set of random examples and one handcrafted set. As
explained below, the handcrafted data set was created because the random set
resulted in very long plans. However, closed-loop learning helps avoid sampling
problems.

In closed-loop learning, the system can repeat the entire learning process to
improve its performance. The first column in Table 2 gives statistics for learning
to climb a high step. Over three repetitions, the average number of trials needed
to learn to climb the step was 104 and the average amount of time needed to
complete the task is 32.7 seconds. The actions and their effects are recorded so
that they can be added to the training examples for the model learner.
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Table 2. Results for climbing a high step

Climbing high step 1st Pass 2nd Pass

Repeats 3 5
Min. Trials 102 22
Max. Trials 105 41
Avg. Trials 104 31
Avg. Time 32.7 (sec) 25.1 (sec)

The second column in Table 2 gives the statistics for learning to climb a
high step after the data from the first pass are added. Over five repetitions, the
average number of trials needed to learn to climb the step has been reduced to
31 and the average amount of time needed to complete the task is 25.1 seconds,
indicating that a better plan was produced.

The systems performs better because the training data for closed-loop learn-
ing contains more training examples in areas that the human operator failed to
properly sample. In fact, the difference is stronger than the table indicates. In
the first pass, the planner was helped by using the handcrafted training exam-
ples. Had this not been done, the number of trials and times would have been
significantly greater.

7 Related Work

Madani, Hanks and Condon [9] show that when deterministic planning is pos-
sible, it has the advantage of having lower computational complexity than non-
deterministic or stochastic planning. When the domain is continuous or noisy,
any plan generated by a classical planner can only be a rough approximation to
an optimal solution. Stochastic planning is able to generate solutions that are
robust and somewhat closer to optimal when uncertainty is present. However, to
achieve high performance in both learning and execution, they are usually heav-
ily engineered to suit a specific problem domain. Abbeel, et al [1] and Stulp, et al
[21] are excellent examples of systems that achieve very impressive performance
in their respective domains of helicopter flight and humanoid robot walking. In
both cases, much of this performance is achieved by priming the learning system
with models of helicopter dynamics or gait trajectories. Thus learning is largely
a matter of tuning parameters.

Model-based reinforcement learning methods provide structure to a problem
to reduce the search required in both learning and planning. Structure can also
be provided in the form of algebraic decision diagrams as in SPUDD [7] or by
performing dimensionality reduction [10]. Hierarchical learning systems reduce
search complexity by breaking a problem into layers. In some cases, each layer
employs the same learning mechanism applied to different levels of abstractions,
such as Dietterich [3], and Hengst [6]. Others use different representations and
algorithms for each layer. For example, Powers & Balch [17] have a layered ar-
chitecture for controlling a vehicle in a simulated world. A deliberative layer
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represents the world as a grid and performs path planning. The actual control is
performed by a lower, reactive layer, which handles uncertainty in a continuous
world. Our approach is similar in spirit to Powers & Balch [17] except that we
aim for greater domain independence by combining a general purpose planner,
for constructing a sequence of abstract actions, with a parameter optimisation
method to learn the implementation of those actions in a non-deterministic en-
vironment. The action models of the planner are extended to include qualitative
models for reasoning about continuous variables and their qualitative relations,
and are learned through active discovery by the robot.

This research builds on our own previous work on combining qualitative and
quantitative methods in learning and planning. Potts [16] used machine learning
to perform system identification. Ryan [19] created a planner that generates a
sequence of actions whose implementation is not given but which can be learned
by reinforcement learning. Ryan’s method worked well in discrete domains but
does not scale well to continuous domains. This problem was addressed by Sam-
mut and Yik [20], who developed a system for learning the gait for a bipedal
robot. Here, a planner produces a sequence of parameterised qualitative actions.
Subsequent trial-and-error learning determines the values of those parameters
so that the qualitative plan is made operational. Brown [2] used Inductive Logic
Programming to learn action models for a robot planning system.

In work related to locomotion in rescue robots, Ohno et al [14] manually
specify control rules before learning precise actuator movements. Mihankhah
[12] follow a similar pre-programmed approach with fuzzy controllers, and Tseng
[24] explicitly model a robot slipping. Vincent and Sun [25] use reinforcement
learning to teach a robot, in simulation, to climb over a box, and Mourikis [13]
train multiple PID controllers to climb a staircase. These approaches all focus
on learning the actuator movements. This is equivalent to only our parameter
refinement stage, whereas, this work also builds a model of the robot and plans
the robot’s actions.

8 Conclusion

We have demonstrated a hybrid learning system that combines learning qual-
itative models with reinforcement learning. The result is a system that learns
complex plans in a relatively small number of trials, supporting the claim that
high-level knowledge about the task can reduce the attempts needed to learn a
new skill.

There are several ways in which the present system can be improved. It re-
lies on existing base learning methods, where Padé is used to induce qualitative
relations that are then used by C4.5 to organise them by operating region. The
use of these base learners has limitations. Padé can only induce M+ and M− re-
lations for a limited number of variables. C4.5 requires the artificial introduction
of negative training examples. In the future, we would like to explore different
methods for learning qualitative models, such as [15]. It would also be preferable
to find alternatives to C4.5 that can learn from positive only data or a form
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of model tree learning that can induce the qualitative model as it builds the
classifier for the operating region.
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