
RoboCup 2D Soccer Simulation League: Evaluation
Challenges

Mikhail Prokopenko1, Peter Wang2, Sebastian Marian3, Aijun Bai4, Xiao Li5 and
Xiaoping Chen5

1 Complex Systems Research Group, Faculty of Engineering and IT
The University of Sydney, NSW 2006, Australia
mikhail.prokopenko@sydney.edu.au

2 Data Mining, CSIRO Data61, PO Box 76, Epping, NSW 1710, Australia
3 Compa-IT, Romania

4 Department of Electrical Engineering and Computer Sciences
University of California Berkeley

5 Multi-Agent Systems Lab, School of Computer Science and Technology,
University of Science and Technology of China

Abstract. We summarise the results of RoboCup 2D Soccer Simulation League
in 2016 (Leipzig), including the main competition and the evaluation round.
The evaluation round held in Leipzig confirmed the strength of RoboCup-2015
champion (WrightEagle, i.e. WE2015) in the League, with only eventual finalists
of 2016 competition capable of defeating WE2015. An extended, post-Leipzig,
round-robin tournament which included the top 8 teams of 2016, as well as
WE2015, with over 1000 games played for each pair, placed WE2015 third be-
hind the champion team (Gliders2016) and the runner-up (HELIOS2016). This
establishes WE2015 as a stable benchmark for the 2D Simulation League. We
then contrast two ranking methods and suggest two options for future evaluation
challenges. The first one, “The Champions Simulation League”, is proposed to
include 6 previous champions, directly competing against each other in a round-
robin tournament, with the view to systematically trace the advancements in the
League. The second proposal, “The Global Challenge”, is aimed to increase the
realism of the environmental conditions during the simulated games, by simulat-
ing specific features of different participating countries.

1 Introduction

The International RoboCup Federation’s Millennium challenge sets an inspirational tar-
get that by mid-21st century, a team of fully autonomous humanoid soccer players shall
win the soccer game, complying with the official rule of the FIFA, against the winner
of the most recent World Cup [1]. In pursuit of this goal, the RoboCup Federation has
introduced multiple leagues, with both physical robots and simulation agents, which
have developed different measures of their progress over the years. The main mode, of
course, is running competitions at the national, regional and world cup levels. In addi-
tion, however, various leagues have included specific evaluation challenges which not
only complement the competitions, but also advance the scientific and technological
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base of RoboCup and Artificial Intelligence in general. Typically, a challenge intro-
duces some new features into the standard competition environment, and then evaluates
how the teams perform under the new circumstances.

For example, during an evaluation round of RoboCup 2001 the rules of the soccer
simulator were modified in such a way that “dashing on the upper half of the field
resulted in only half of normal speed for all the players” [2]. This modification was
not announced in advance, and while the changed conditions were obvious to human
spectators, none of the simulation agents could diagnose the problem [2].

A specific technical challenge was presented by the so-called Keepaway problem
[3], when one team (the “keepers”) attempt to keep the ball away from the other team
(the “takers”) for as long as possible.

Later on, the focus of evaluation in RoboCup 2D Soccer Simulation League shifted
from changing the physics of the simulation or the tactics of the game, to studying
the diverse “eco-system” of the League itself, which has grown to include multiple
teams. The Simulated Soccer Internet League (SSIL) was designed to allow a continual
evaluation of the participating teams during the time between annual RoboCup events:
pre-registered teams could upload their binaries to a server on which games were played
automatically [4]. The SSIL was used at some stage as a qualification pathway to the
annual RoboCup, but this practice was discontinued due to verification problems.

Several other challenges and technical innovations introduced in Soccer Simulation
Leagues (both 2D and 3D), including heterogeneous players, stamina capacity model,
and tackles, are described in [5]. This study further pointed out the importance of the
online game analysis and online adaptation.

More recently, a series of “drop-in player challenges” was introduced by [6] in or-
der to investigate how real or simulated robots from teams from around the world can
cooperate with a variety of unknown teammates. In each evaluation game, robots/agents
are drawn from the participating teams and combined to form a new team, in the hope
that the agents would be able to quickly adapt to meaningfully play together without
pre-coordination. The “drop-in” challenge was adopted by RoboCup Standard Platform
League (SPL) and both RoboCup Soccer Simulation Leagues, 2D and 3D. In all the con-
sidered leagues, the study observed “a trend for agents that perform better at standard
team soccer to also perform better at the drop-in player challenge” [6].

At RoboCup-2016 in Leipzig, several soccer and rescue leagues increased realism
of the competition by holding their competitions outdoors. In the SPL, a separate com-
petition was successfully held not on the customary green carpet but rather on an ar-
tificial turf, under diverse natural lighting conditions. Similarly, Middle Size Soccer
League also successfully implemented a Technical Challenge under these difficult con-
ditions, while the Humanoid League used artificial turf and real soccer balls6.

In this paper, we describe the latest evaluation challenge, introduced by RoboCup
2D Soccer Simulation League [7, 8] in 2016, in order to trace the progress of the overall
League. Furthermore, we describe two possibilities for future challenges: one intended
to systematically trace the advancements in the League (“The Champions Simulation
League”), and the other aimed to increase the realism of the environmental conditions
during the simulated games (“The Global Challenge”).

6 http://robocup2016.org/press-releases/leipzig-best-place-for-robots-and-friends/452749
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2 Methodology and Results

2.1 Actual competition

The RoboCup-2016 Soccer Simulation 2D League included 18 teams from 9 countries:
Australia, Brazil, China, Egypt, Germany, Iran, Japan, Portugal and Romania. The last
group stage was a round-robin tournament for top 8 teams. It was followed by the
two-game semi-final round, a single-game final, and 3 more playoffs between third and
fourth, fifth and sixth, and seventh and eighth places.

In the two-game semi-final round, HELIOS2016 (Japan) [9] defeated team Ri-
one (Japan) [10], 3:0 and 4:0, while Gliders2016 (Australia) [11, 12] defeated team
CSU Yunlu (China) [13], winning both games with the same score 2:1.

The single-game final between HELIOS2016 and Gliders2016 went into the extra
time, and ended with Gliders2016 winning 2:1.

The third place was taken by team Ri-one which won against CSU Yunlu 3:0.
Oxsy (Romania) [14] took the fifth place, winning 4:0 against Shiraz (Iran) [15]; and

MT2016 (China) [16] became seventh, winning against FURY (Iran) [17] on penalties
4:2. The final ranking of RoboCup-2016 (Leipzig, Germany) is shown in the left column
of Table 1.

2.2 Ranking Estimation

Using the ranking estimation methodology established by [18, 19], we conducted an
8-team round-robin tournament for top 8 teams from RoboCup-2016. The estimation
process used the released binaries of top RoboCup-2016 teams7, where all 28 pairs
of teams play approximately 4000 games against one another. The following discrete
scheme was used for discrete point calculation:

– Firstly, the average score between each pair of teams (across all 4000 games) is
rounded to the nearest integer (e.g. “1.2 : 0.5” is rounded to “1 : 1”).

– Next, points are allocated for each pairing based on these rounded results: 3 for a
win, 1 for a draw and 0 for a loss.

– Teams are then ranked by the sum of the points received against each opponent.
The total goal difference of the rounded scores is used as a tie-breaker.

The final ranking rd under this scheme is presented in Table 1.
In order to capture the overall difference between any two rankings ra and rb, the

L1 distance is utilised [18]:

d1(r
a, rb) = ‖ra − rb‖1 =

n∑
i=1

|rai − rbi | , (1)

where i is the index of the i-th team in each ranking, 1 ≤ i ≤ 8.
The distance between the actual ranking ra and the estimated ranking rd is

d1(r
a, rd) = |1−1|+ |2−2|+ |3−6|+ |4−4|+ |5−3|+ |6−5|+ |7−8|+ |8−7| = 8.

7 https://chaosscripting.net/files/competitions/RoboCup/WorldCup/2016/2DSim/binaries/
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Gliders HELIOS Ri-one CSU Yunlu Oxsy Shiraz MT2016 FURY Goals Points rd

Gliders 0.3 : 0.4 2.8 : 0.3 1.9 : 0.3 0.7 : 0.8 3.8 : 0.4 5.0 : 0.0 2.5 : 0.2 18 : 1 17 1

HELIOS 0.4 : 0.3 1.8 : 0.1 3.0 : 0.2 1.2 : 0.5 4.3 : 0.3 3.6 : 0.0 2.5 : 0.0 17 : 1 17 2

Ri-one 0.3 : 2.8 0.1 : 1.8 1.1 : 1.1 0.2 : 1.8 0.6 : 0.5 0.4 : 0.0 0.6 : 0.5 3 : 10 4 6

CSU Yunlu 0.3 : 1.9 0.2 : 3.0 1.1 : 1.1 0.5 : 1.2 2.0 : 0.7 1.4 : 0.0 1.2 : 0.4 6 : 8 11 4

Oxsy 0.8 : 0.7 0.5 : 1.2 1.8 : 0.2 1.2 : 0.5 3.5 : 0.5 4.4 : 0.0 3.0 : 0.1 16 : 4 15 3

Shiraz 0.4 : 3.8 0.3 : 4.3 0.5 : 0.6 0.7 : 2.0 0.5 : 3.5 0.5 : 0.1 0.8 : 1.0 5 : 16 5 5

MT2016 0.0 : 5.0 0.0 : 3.6 0.0 : 0.4 0.0 : 1.4 0.0 : 4.4 0.1 : 0.5 0.0 : 0.0 0 : 15 2 8

FURY 0.2 : 2.5 0.0 : 2.5 0.5 : 0.6 0.4 : 1.2 0.1 : 3.0 1.0 : 0.8 0.0 : 0.0 2 : 12 3 7

Table 1. Round-robin results (average goals scored and points allocated with the discrete scheme)
for the top 8 teams from RoboCup 2016, ordered according to their final actual competition
rank, ra. The scores are determined by calculating the average number of goals scored over
approximately 4000 games rounded to the nearest integer, then awarding 3 points for a win, 1
point for a draw and 0 points for a loss. The resultant ranking is marked with rd.

The top two teams were fairly close in their performance (confirmed by the fi-
nal game, which needed extra time). Similarly the 7th and 8th teams were similar in
strength too (not surprisingly their playoff ended up with penalties). The main discrep-
ancy between the actual and estimated results is due to performances of two teams:
Oxsy (whose rank is estimated as third, while the actual rank was only fifth) and Ri-one
(which finished the competition as third, while its average rank is estimated to be sixth).

2.3 A critique of the continuous ranking scheme

There exists another ranking method: continuous scheme [18, 19]:

– Teams are ranked by the sum of average points obtained against each opponent
across all 4000 games.

– The total goal difference of the non-rounded scores is used as a tie-breaker.

Both schemes, discrete and continuous, were introduced in order to evaluate differ-
ent competition formats, using the top 8 teams of 2012 and 2013 [18, 19]. However,
over the years it has become apparent that the continuous scheme suffers from two ma-
jor drawbacks, violating the balance of points (3 for a win, 1 for a draw and 0 for a loss)
and overestimating the points for draws and losses. Specifically, under the continuous
scheme:

1. there is a bias to attribute more points to draws with higher scores.
2. there is a bias to reduce the advantage of the three-points-for-a-win standard.

1. Let us consider two opposite scenarios: (i) two teamsA andB of equal strengths,
denoted A ⇔ B, but with a stronger defensive capability, play N games resulting in
the average 0 : 0 score; and (ii) two teams X and Y of equal strengths X ⇔ Y , but
with a stronger attacking capability, play N games resulting in the average q : q score,
where q > 0 is sufficiently large, e.g., q = 3. In the first pair, the scores of individual
games, which may or may not be draws, do not diverge much from 0 : 0, as the teams
are defensive. And so the actual drawn scores 0 : 0 dominate among the results, with
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large outliers k : 0 or 0 : k, for k > 0 being relatively rare. Thus, the continuous points
p attained by teams A and B stay close to 1.0, for example, pA ≈ pB ≈ 1.2.

In the second pair, the scores of individual games, which again may or may not be
draws, diverge more from the average q : q, due to a higher variability of possible high
scores. Consequently, the proportion of actual draws among N games is much smaller
in comparison to the first pair, and the large outliers k : 0 or 0 : k, even for k > q, are
more numerous. As a result, the teams X and Y exchange wins and losses more often
than teams A and B, acquiring more points for their respective wins. This yields the
continuous points pX and pY significantly higher than 1.0, for example, pX ≈ pY ≈
1.4, creating a general bias to attribute more points to the drawn contests with higher
scores: pA ≈ pB < pX ≈ pY . A typical sample of 10,000 scores q1 : q2, where
both q1 and q2 are normally distributed around the same mean q, with the standard
deviation σ = 1.0, results in the following continuous points p⇔(q) for different draws
around q: p⇔(0) = 1.23 for draws 0.38 : 0.38, p⇔(1) = 1.33 for draws 1.07 : 1.08,
p⇔(2) = 1.36 for draws 1.99 : 2.00, and p⇔(3) = 1.38 for draws 3.02 : 3.00.

While the higher scoring teams may be expected to get an advantage at a tie-breaker
stage, getting more continuous points for the same outcome is obviously an unfair bias.
The discrete scheme does not suffer from this drawback as the average scores are con-
verted into the identical discrete points immediately, i.e., pA = pB = pX = pY = 1.0.

It is easy to see that the lower bound for the continuous points shared by any two
teams of equal strength is inf⇔ = 1.0 (attainable only if all N games are drawn),
while the upper bound is sup⇔ = 1.5 (attained in the extreme case when all N games
are non-draws, with wins and losses split equally). Consequently, under the continuous
scheme, the points attributed to equal teams drawing on average, are overestimated,
being somewhere between the lower and upper bounds: inf⇔ < p < sup⇔, while the
expected result (one point) sits only at exactly the lower bound.

2. The “three-points-for-a-win” standard which was widely adopted since FIFA
1994 World Cup finals “places additional value on wins with respect to draws such
that teams with a higher number of wins may rank higher in tables than teams with a
lower number of wins but more draws”8. To illustrate the second drawback of the con-
tinuous scheme we will contrast two scenarios, comparing the combined points of two
drawn contests against the combination of one-won and one-lost contests.

Firstly, we consider a case when team Q is paired with teams U and Z, such that
Q⇔ U and Q⇔ Z. We do not expect transitivity, and so U ⇔ Z is not assumed. The
continuous points for team Q resulting from these two iterated match-ups, both drawn,
could vary between these lower bound (inf⇔,⇔) and upper bound (sup⇔,⇔):

inf
⇔,⇔

= inf
⇔

+ inf
⇔

= 2.0

sup
⇔,⇔

= sup
⇔

+sup
⇔

= 3.0

Typically the combined points vary around the level of pQ ≈ 2.6, which is an overesti-
mation of the ideal outcome by more than half-a-point.

Secondly, we consider a scenario with team R matched-up against teams V and W ,
with team V being weaker than R, denoted R ⇒ V , while the team W is stronger

8 https://en.wikipedia.org/wiki/Three points for a win
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than R, denoted R ⇐ W . The relative strength of V and W is not important for our
comparison. The continuous points that team R attains from the first pair, against the
weaker opponent V , are bounded by inf⇒ = 1.5 (just a slight over-performance) and
sup⇒ = 3.0 (the total dominance with all N games won):

1.5 = inf
⇒
< pR < sup

⇒
= 3.0 .

In practice, the stronger team rarely drops below pR ≈ 2.0 points. In the second pair,
team R is weaker, and its continuous points are bounded by inf⇐ = 0.0 (the total
inferiority with allN games lost) and sup⇐ = 1.5 (getting almost to an equal standing):

0.0 = inf
⇐
< pR < sup

⇐
= 1.5 .

In practice, the weaker team rarely reaches beyond pR ≈ 1.0 points. A typical sample
of 10,000 scores q1 : q2, where q1 and q2 are normally distributed around the means
q and 0.0 respectively, with the standard deviation σ = 1.0, results in the following
continuous points p⇒(q) for different won contests around q: p⇒(1) = 2.31 for wins
1.07 : 0.38, p⇒(2) = 2.75 for wins 2.00 : 0.38, and p⇒(3) = 2.94 for wins 2.97 : 0.38.
Correspondingly, the continuous points p(q) for the respective lost contests sampled
under the same distribution are overestimated above 0.0 as follows: p⇐(1) = 0.32,
p⇐(2) = 0.13, and p⇐(3) = 0.04.

The combined continuous points for team R after these match-ups, one won and
one lost, could vary between the lower bound of and the upper bound of

inf
⇒,⇐

= inf
⇒

+ inf
⇐

= 1.5

sup
⇒,⇐

= sup
⇒

+sup
⇐

= 4.5

In practice, 2.0 < pR < 4.0. That is, the combined continuous points of a win and a
loss typically vary around pR ≈ 3.0, which is an appropriate outcome.

Contrasting the possible bounded intervals and typical outcomes of two contests
(two draws versus one win and one loss) immediately highlights that the continuous
points do not differentiate these scenarios sufficiently well. The intention of the three-
points-for-a-win standard was precisely to preference the one-win-and-one-loss sce-
nario over the two-draws scenario, p⇒,⇐ = 3 > p⇔,⇔ = 2. In other words, team Q
with two drawn contests should achieve a lower rank than team R with a won and a
lost contest, with the difference being the cost of a single drawn game. The continuous
scheme fails in this regard, by producing, on average, less than half-a-point difference,
p⇒,⇐ ≈ 3.0 > p⇔,⇔ ≈ 2.6. In fact, it is quite conceivable that p⇒,⇐ could happen to
be less than p⇔,⇔ under the continuous scheme in some cases, as inf⇒,⇐ < sup⇔,⇔.
In other words, one hard-won contest, e.g. p⇒(1) = 2.31, coupled with a serious loss,
e.g., p⇐(3) = 0.04 could earn less points (e.g., p⇒,⇐ ≈ 2.35) than two high-scoring
draws, e.g. p⇔(3) = 1.38 (resulting in p⇔,⇔ ≈ 2.76) — definitely, something not
intended by the three-points-for-a-win standard.

Again, the discrete scheme easily overcomes this drawback as the average scores
are converted into the appropriate discrete points for each contest (3 for a win, 1 for a
draw and 0 for a loss), and combined only afterwards.
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The two problems identified for the continuous scheme may amplify over many
match-ups in a 8-teams round-robin, especially when there are many teams of similar
strength (which is the case in the Simulation League in recent years). The biases become
even more pronounced in the absence of transitivity in teams’ relative strengths. In
light of these concerns, we suggest that some recent works employing the continuous
scheme, e.g. [20], would benefit from re-evaluation.

2.4 Evaluation round

The 2016 competition also included an evaluation round, where all 18 participating
teams played one game each against the champion of RoboCup-2015, team WrightEa-
gle (China), i.e., WE2015 [21]. Only two teams, the eventual finalists Gliders2016 and
HELIOS2016, managed to win against the previous year champion, with Gliders de-
feating WrightEagle 1:0, and HELIOS2016 producing the top score 2:1.

We extended this evaluation over 1000 games, again playing WE2015 against the
top 8 teams from RoboCup-2016. Table 2 summarises the evaluation for RoboCup-
2016: both actual scores obtained in Leipzig and the averages over 1000 games.

Gliders2016 HELIOS2016 Ri-one CSU Yunlu Oxsy Shiraz2016 MT2016 FURY

WE2015 0 : 1 1 : 2 7 : 1 2 : 0 4 : 1 3 : 2 4 : 0 11 : 2

WE2015 1.4 : 1.8 1.3 : 1.7 5.0 : 0.5 2.7 : 0.5 3.5 : 1.3 4.0 : 0.8 5.9 : 0.0 4.8 : 0.4

Table 2. Evaluation round results for the top 8 teams playing against WE2015. Top row: actual
scores obtained at RoboCup-2016 in Leipzig; bottom row: average scores over 1000 games.

The evaluation round confirmed the strength of RoboCup-2015 champion in the
League. It is evident that WE2015, if entered in 2016, would likely have achieved third
rank. To confirm this conjecture we combined the estimation results presented in Table
1 with the estimates of WE2015 scores from Table 2, summarised in Table 3.

Gliders HELIOS WE2015 Ri-one CSU Yunlu Oxsy Shiraz MT2016 FURY Goals Points re

Gliders 0.3 : 0.4 1.8 : 1.4 2.8 : 0.3 1.9 : 0.3 0.7 : 0.8 3.8 : 0.4 5.0 : 0.0 2.5 : 0.2 20 : 2 20 1

HELIOS 0.4 : 0.3 1.7 : 1.3 1.8 : 0.1 3.0 : 0.2 1.2 : 0.5 4.3 : 0.3 3.6 : 0.0 2.5 : 0.0 19 : 2 20 2

WE2015 1.4 : 1.8 1.3 : 1.7 5.0 : 0.5 2.7 : 0.5 3.5 : 1.3 4.0 : 0.8 5.9 : 0.0 4.8 : 0.4 29 : 8 18 3

Ri-one 0.3 : 2.8 0.1 : 1.8 0.5 : 5.0 1.1 : 1.1 0.2 : 1.8 0.6 : 0.5 0.4 : 0.0 0.6 : 0.5 4 : 15 4 7

CSU Yunlu 0.3 : 1.9 0.2 : 3.0 0.5 : 2.7 1.1 : 1.1 0.5 : 1.2 2.0 : 0.7 1.4 : 0.0 1.2 : 0.4 7 : 11 11 5

Oxsy 0.8 : 0.7 0.5 : 1.2 1.3 : 3.5 1.8 : 0.2 1.2 : 0.5 3.5 : 0.5 4.4 : 0.0 3.0 : 0.1 17 : 8 15 4

Shiraz 0.4 : 3.8 0.3 : 4.3 0.8 : 4.0 0.5 : 0.6 0.7 : 2.0 0.5 : 3.5 0.5 : 0.1 0.8 : 1.0 6 : 20 5 6

MT2016 0.0 : 5.0 0.0 : 3.6 0.0 : 5.9 0.0 : 0.4 0.0 : 1.4 0.0 : 4.4 0.1 : 0.5 0.0 : 0.0 0 : 21 2 9

FURY 0.2 : 2.5 0.0 : 2.5 0.4 : 4.8 0.5 : 0.6 0.4 : 1.2 0.1 : 3.0 1.0 : 0.8 0.0 : 0.0 2 : 17 3 8

Table 3. Evaluation round-robin results (average goals scored and points allocated with discrete
scheme), combined for the top 8 teams from RoboCup 2016 and the RoboCup-2015 champion
(WE2015). The resultant evaluation ranking is marked with re.
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Gliders2016 WE2015 WE2014 WE2013 HELIOS2012 WE2011 Goals Points rl

Gliders2016 1.8 : 1.4 1.8 : 1.3 1.7 : 0.9 1.2 : 0.1 2.0 : 1.0 9 : 4 15 1

WE2015 1.4 : 1.8 2.5 : 2.5 3.0 : 2.5 2.2 : 0.9 4.0 : 2.9 13 : 12 8 2

WE2014 1.3 : 1.8 2.5 : 2.5 2.8 : 2.6 2.3 : 0.8 3.9 : 3.0 13 : 12 8 3

WE2013 0.9 : 1.7 2.5 : 3.0 2.6 : 2.8 1.9 : 0.9 2.9 : 3.2 12 : 12 6 4

HELIOS2012 0.1 : 1.2 0.9 : 2.2 0.8 : 2.3 0.9 : 1.9 2.6 : 1.8 6 : 9 3 5

WE2011 1.0 : 2.0 2.9 : 4.0 3.0 : 3.9 3.2 : 2.9 1.8 : 2.6 12 : 16 1 6

Table 4. Champions Simulation League round-robin results (average goals scored and points
allocated with discrete scheme), for six champions of RoboCup 2011 to 2016. To distinguish
WE2015 and WE2014 results, non-rounded scores were used as a tie-breaker. The resultant
league ranking with discrete point allocation scheme is marked with rl.

3 Proposed challenges

3.1 Champions Simulation League

In order to trace the progress of the League over time it is interesting to compare per-
formance of several previous champions, directly competing against each other in a
round-robin tournament. For example, we evaluated relative performance of six cham-
pions of RoboCup-2011 to RoboCup-2016: WrightEagle (WE2011 [22, 23], WE2013
[24, 25], WE2014 [26], WE2015 [21]), HELIOS2012 [27] and Gliders2016 [11, 12].

The round-robin results over 1000 games, presented in Table 4, confirmed the progress
of the League over the last six years, with the resultant ranking rl completely concurring
with the chronological ranking rt, i.e., d1(rl, rt) = 0.

3.2 Global Challenge

Another proposal suggests to pit together the best teams from each of the top 6 or
8 participating countries (for example, in 2016 it would have been Australia, Brazil,
China, Egypt, Germany, Iran, Japan, Romania), with two “home-and-away” games be-
tween opponents. There can be 14 games for a home-and-away single-elimination round
with 8 teams; or 30 games for a home-and-away double round-robin with 6 teams.
The “Global Challenge” will be distinguished from the main competition by playing
the games with different parameters, for example, higher noise, or even with random
player(s) disconnecting. In other words, the Global Challenge will focus on resilience
of the teams in the face of unexpected conditions.

In each game, the home side would choose a hidden parameter to vary, in order to
represent some features of their country (like high altitude in Bolivia or long-distance
travel to Australia). These parameters will not be known to the opposition, but would
be the same for both teams in that game.

The full list of possible hidden server parameters may include a significant num-
ber (currently, the number of server parameters is 27) and the set of changeable pa-
rameters will be agreed in advance. The global challenge mode will be selected via
a new parameter, for example, server::global challenge mode, introduced in the sim-
ulation server (server.conf). When the global challenge mode parameter is set to true,
the server will permit the left side coach (the home side) to send a command like this:
(change player param (param 1 value) (param 2 value). . . (param N value)).
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For example, if the home side chooses to simulate some bad weather conditions
or a soggy pitch, these server parameters can be changed: ball accel max, ball decay,
ball rand, ball speed max, catch probability, inertia moment, kick rand, player rand.

Exploiting their own strong points, and possibly trying to exploit some weak points
of the opponent, the home side could change some of the available parameters in a way
that creates an advantage. While the adjusted environment will be applied equally to
the both teams, the task of the left side coach (the home team) will be to optimise the
choice of the adjusted parameters to maximise the home side advantage.

4 Conclusion

We summarised the results of RoboCup-2016 competition in the 2D Soccer Simula-
tion League, including the main competition and the evaluation round. The evaluation
round confirmed the strength of RoboCup-2015 champion (WrightEagle, i.e. WE2015)
in the League, with only eventual finalists of 2016 (Gliders2016 and HELIOS2016)
capable of winning against WE2015. After the RoboCup-2016, we extended this eval-
uation, over 1000 games for each pair, in a multi-game round-robin tournament which
included the top 8 teams of 2016, as well as WE2015. The round-robin results con-
firmed that WE2015 would take third place, behind the champion team (Gliders2016)
and the runner-up (HELIOS2016). This establishes WE2015 as a stable benchmark for
the 2D Simulation League. In doing so we offered a critique of a particular ranking
method (the continuous scheme), arguing that the discrete scheme is more appropriate.

We then followed with proposing two options to develop the evaluation challenge
further. The first such possibility introduces “The Champions Simulation League”,
comprising several previous champions, directly competing against each other in a
round-robin tournament. “The Champions Simulation League” can systematically trace
the advancements in the League, measuring the progress of each new champion over
its predecessors. We evaluated The Champions Simulation League with the champions
from 2011 to 2016, producing a ranking which completely concurs with the chronologi-
cal order, and confirming a steady progress in the League. Arguably, simulation leagues
are the only ones in RoboCup where such an evaluation is possible, given the obvious
constraints and difficulties with running such a tournament in robotic leagues.

Tracing such advances is especially important because different champion teams
usually employ different approaches, often achieving a high degree of specialisation in
a sub-field of AI, for example, automated hierarchical planning developed by WrightEa-
gle [23, 24, 26, 21, 28], opponent modelling studied by HELIOS [27], and human-based
evolutionary computation adopted by Gliders [11, 12]. Many more research areas are
likely to contribute towards improving the League, and several general research direc-
tions are recognised as particularly promising: nature-inspired collective intelligence
[29–31], embodied intelligence [32–35], information theory of distributed cognitive
systems [36–41], guided self-organisation [42–44], and deep learning [45–47].

The other proposed evaluation challenge (“The Global Challenge”) aims to model
environmental conditions during the games by simulating specific features of differ-
ent participating countries, such as climate, infrastructure, travel distance, etc. This,
arguably, may increase the realism of the simulated competition, making another small
step toward the ultimate Millennium challenge.
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5 Acknowledgments

A majority of RoboCup 2D Soccer Simulation teams, including the 2016 champion
team, Gliders2016, are based on the well-developed code base agent2d [48], release
of which has greatly benefited the RoboCup 2D Simulation community. Several teams,
including WrightEagle and Oxsy, are independent of agent2d.
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