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Abstract. This work presents a pioneering collaboration between two
robot soccer teams from different RoboCup leagues, the Small Size League
(SSL) and the Middle Size League (MSL). In the SSL, research is focused
on fast-paced and advanced team play for a centrally-controlled multi-
robot team. MSL, on the other hand, focuses on controlling a distributed
multi-robot team. The goal of cooperation between these two leagues is
to apply teamwork techniques from the SSL, which have been researched
and improved for years, in the MSL. In particular, the Skills Tactics and
Plays (STP) team coordination architecture, developed for centralized
multi-robot team, is studied and integrated into the distributed team
in order to improve the level of team play. The STP architecture en-
ables more sophisticated team play in the MSL team by providing a
framework for team strategy adaptation as a function of the state of the
game. Voting-based approaches are proposed to overcome the challenge
of adapting the STP architecture to a distributed system. Empirical eval-
uation of STP in the MSL team shows a significant improvement in of-
fensive game play when distinguishing several offensive game states and
applying appropriate offensive plays.

Keywords: Robot soccer, Multi-robot system, Distributed coordination, Team
plan execution

1 Introduction

RoboCup is an international robot soccer organization, founded to promote re-
search in robotics and artificial intelligence. The ultimate goal of RoboCup is
to beat, by 2050, the winner of the most recent human soccer World Cup with
a team of fully autonomous humanoid robot soccer players, complying with the
official rules of FIFA. To accomplish this goal, teams compete annually in various
soccer leagues, each of which focuses on the different challenges of robot soccer.
This work is related to two of those soccer competitions: Small Size League3

3http://wiki.robocup.org/wiki/Small_Size_League



(SSL) and Middle Size League4 (MSL) (Figure 1). SSL is specialized in fast-
paced and advanced team play within a central coordinated multi-robot team.
In MSL on the other hand, research focuses on coordination of a distributed
multi-robot team. Both teams operate in adversarial environments. In order to
reach the RoboCup goal, research and accomplishments of the different leagues
should be brought together. This work presents a co-operation between the SSL
team CMDragons from the Carnegie Mellon University in Pittsburgh (United
States) and the MSL team Tech United from Eindhoven University of Technol-
ogy (the Netherlands).

Much research [3,8,9, 12] has been done on team planning of centrally coor-
dinated multi-robot teams. However, when the number of robots in the system
increases, computations exponentially increase in complexity. Distributed multi-
robot systems are a solution to this computation problem [11], as each individual
robot computes its tasks. As high-level team planning is the same for both cen-
trally coordinated and distributed multi-robot systems, the research on team
planning in centrally coordinated systems can be beneficially used in distributed
systems. This work presents an integration of a planning algorithm designed for
a centrally coordinated multi-robot team into a distributed multi-robot team.

The case study used for this work is the RoboCup environment. Towards
the RoboCup goal of beating a human soccer team, the number of robots in
the team will increase to 11, therefore a distributed solution is desired [11].
The advanced planning strategies developed by the SSL over the past years
[1, 2, 6], can be used in the distributed teams, such as the MSL. For this work,
the Skills, Tactics and Plays (STP) planning algorithm [2], developed by the
CMDragons team for small size soccer robots, is integrated into the Tech United
middle size robots to increase the level of team play in Tech United attacks.
Compared to planning algorithms designed for multi-robot teams [3, 8, 9, 12],
the STP architecture is specifically designed to control an autonomous multi-
robot team in a dynamic environment with the presence of adversary’s. The
architecture contains predefined team plans, the plays, which are chosen during
game play based on the world state. The tactics and skills associated with a play
define the single robot behaviour during the execution of a play.

This paper presents the approach and challenges of integrating an architec-
ture developed for a centralized multi-robot team into a distributed multi-robot
team. In particular, a distributed team of robots, with differences in their esti-
mated state of the world, needs to agree on a team plan and role assignments
in a fair way. To overcome this problem, voting systems are considered to de-
termine which play to use, as well as their optimal role assignment [4,5,7]. The
new algorithm in the Tech United MSL team is evaluated with simulations and
show that using the SSL approach can significantly improve the level of team
play.

The remainder of the paper is organized as follows: Section 2 presents briefly
the current Tech United strategy; Section 3 explains the Skill, Tactics and Play

4http://wiki.robocup.org/wiki/Middle_Size_League



(STP) architecture designed by the CMDragrons team; Section 4 describes the
integration of STP in the Tech United software and finally; Section 5 gives the
simulation results which show the improvement of the Tech United’s offense; the
paper is concluded in Section 6.

(a) Small Size League at RoboCup
European Open 2016, Eindhoven,
the Netherland

(b) Middle Size League at RoboCup
2015, Hefei, China

Fig. 1: Both competitions at RoboCup tournaments

2 Tech United MSL strategy

For this study STP is used to integrate offensive plays into the Tech United
team. The current Tech United offensive strategy assigns roles to the active
robots, which include specific tasks. The goalkeeper defends the goal, two de-
fenders position between the ball and their own goal, and two attackers execute
an attack on adversary’s half. Two attacker roles are distinguished: the Attack-
erMain is the role that manipulates the ball and the AttackerAssist positions
on the adversary’s half to potentially receive the ball. Roles execute tasks which
involve decision making and selecting skills to complete the task.
This current implementation does not allow the team to easily change strategies
shortly before a game or add new strategies to the software. Using the STP
architecture, this will be possible.

3 Skill Tactics Play algorithm

The Skills, Tactics and Plays (STP) architecture was designed by CMDragons
to coordinate a centralized team of autonomous robots to achieve long-term
goals [2]. This architecture enables simple specification of team plans as plays,
which are then executed individually by each robot through tactics and skills.
STP enables the team to adapt their team strategy as a function of the state
of the game, resulting in highly versatile teamwork. This section describes each
component of STP and how the CMDragons team uses STP for team planning.



3.1 STP Components

Skills At the most basic level, each robot is capable of performing a certain set
of low-level skills. Skills are base behaviors that can be parameterized to achieve
various goals. In the domain of robot soccer, these skills include navigating
safely and quickly to a specific target location, shooting the ball with a specified
velocity, and intercepting a moving ball, among others. Skills alone do not encode
goal-oriented behavior, but are used in a set of skills to achieve goals.

Tactics Tactics are goal-oriented behaviors that each individual robot performs
to carry out a team plan. These behaviors may be composed of skills, organized
to work cohesively towards achieving a goal. In the CMDragons team, tactics
are implemented as finite state machines that control the flow of the different
skills that make up a tactic.

Each role has a specific set of tactics to perform. Some of the most prominent
tactics in the CMDragons team include the Goalkeeper to block shots from
the adversary, Defenders to prevent the adversaries from passing and shooting,
the AttackerMain to manipulate the ball to score goals on the adversary, and
AttackerAssists to position themselves to receive a pass from the AttackerMain.
Tactics, like skills, may be parametrized. For example, the AttackerAssist may
restrict their search for a good pass location to a specific region of the field.

Plays In STP, team strategy is encoded into a playbook, made up of a set
of plays. A play is a team plan specified as a list of roles that the team of
robots must fulfill. Each role, within the context of STP, is defined as a sequence
of tactics to be completed sequentially. Additionally, plays specify applicability
conditions: preconditions specify the set of game states under which a play should
be considered for selection, while invariants specify the set of game states under
which the team does not need to abort this play and select a new one.

Table 1 shows a slightly simplified example of a play in the CMDragons
playbook. This play is applicable when all preconditions match the world state:
the ball is in the adversary’s half of the field (their side), and there are no
opponents on our half of the field (!opp our side), and our team has possession
of the ball (offense). Furthermore, if this play is selected for execution, it will
remain in execution until either the invariants become false, –i.e., the ball moves
to our side of the field (their side becomes false) or the opponent team gains
possession of the ball (!defense becomes false), or all the robots have finished
performing their role.

3.2 STP Procedure

During each step of execution, the team selects a joint plan, optimally assigns
roles to each robot, and then each robot individually executes its role. This
section describes this procedure, with an emphasis on the team components.



Table 1: An example of a play

PRECOND their side && !opp our side && offense
INVARIANT their side && !defense
NUMROBOTS 1 6

ROLE 0
Goalkeeper

ROLE 1
AttackerMain

ROLE 2
Defender

ROLE 3
AttackerAssist front center

ROLE 4
AttackerAssist front left

ROLE 5
AttackerAssist front right

Play Selection First, the team’s central intelligence decides whether the play that
was last used is still applicable. That is, it checks if the last play’s invariants
are still true, and if at least one of the robots has not yet finished its role. If
these are both true, no new play is selected; if it is false, a new play is selected
from the set of plays whose preconditions hold. If there are multiple plays whose
preconditions hold, a play among the set is chosen randomly, with potentially
different probabilities for each play.

Optimal Role Assignment Once a play has been selected, each of the roles
in the play is assigned to a robot in the team. Given N active robots P =
{ρ0, ρ1, . . . , ρN}, STP optimally assigns the first N roles R = {r0, r1, . . . , rN} to
them optimally, based on a cost function C : P × R → R. In the CMDragons,
this cost function C(ρi, rj) is an estimate of the time that it would take robot
ρi to complete role rj . To do this, a cost matrix C of size N × N is created,
such that the entry at row i and column j corresponds to the computed cost
C(ρi, rj). From this cost matrix, algorithms such as the Hungarian algorithm [10]
can be used to find the assignment from roles to robots that minimizes the total
cost. It is important to note that the costs in matrix C are computed from the
centrally-estimated state of the world, common to all the robots in the team.

The optimal role assignment computation used by the CMDragons is similar
to the approach of Tech United, the only difference are the costs. Where the SSL
team uses time, the MSL team uses distances. Assuming constant speed during
repositioning we can consider time and distance to be equivalent.

Individual Role Execution After STP distributes the roles of the selected play to
each of the robots, they proceed to individually execute their assigned tactic. In



SSL, this step also occurs in a centralized controller, with only the final motion
command being sent to each individual physical robot. However, the computa-
tion of each tactic happens in parallel, with only very limited communication
between robots at this stage.

3.3 STP in distributed team

The bulk of the problem of adapting the STP architecture to the MSL lies in
the previous two steps: play selection and optimal role assignment. In SSL both
steps are performed by a central controller, in MSL however, each robot computes
strategy individually. Therefore, the play selection and role assignment is done
in five separate computations. To execute a team plan towards a common goal,
it is important for the team to agree on the selected play and role assignment.
Section 4 discusses in detail the integration of this joint play selection and role
assignment in MSL.

4 Integration of STP in MSL

The integration of STP involves four main components from the Tech United
software: i) communication ii) the game state evaluation, iii) the role assignment
and iv) the tactics execution. Figure 2 is an overview of the strategy components
needed for the STP integration. Highlighed are the new designed components,
the playbooks with plays, the play selection algorithm and the tactics, and the
re-used and extended components, communication, game state evaluation and
role assignment. This section explains each component in more detail.

Fig. 2: Three main components for STP: playbook, strategy, play execution.

4.1 Overview STP algorithm in MSL

Algorithm 1 shows the complete STP integration algorithm. First the world
state is evaluated on the preconditions and based on those preconditions a play



may be selected (lines 1-2). If a play is selected, the play roles are assigned to
the active robots using the role assignment (lines 4-5). In the execution part,
first the robot checks whether its team mates are still executing the same play,
to ensure all robots execute the same team plan. In addition, the invariants are
checked whether those are still true (lines 7-10). If one of those is false, the robot
will abort the play and updates its play status to NOT IN PROGRESS. Finally,
the robot uses the play selected variable from the play selection, and the play
status to determine whether a play or the default game play will be executed
(lines 12-19). Default game play refers to the strategy as explained in Section 2.

Algorithm 1 Algorithm executing a play

1: world.Precond ← evaluateWorldState()
2: play selected← playSelection(world.Precond)
3:
4: if (play selected) then
5: assignedRoles← RoleAssignment(play selected)

6:
7: if (PLAY IN PROGRESS) then
8: peerInProgress← checkPlayStatePeers()
9: if (!peerInProgress OR !play.invariants) then

10: PLAY NOT IN PROGRESS
11:
12: if (PLAY NOT IN PROGRESS) then
13: if (play selected) then
14: execute play(assignedRoles)
15: PLAY IN PROGRESS
16: else
17: execute default play()

18: else if (PLAY IN PROGRESS) then
19: execute play(assignedRoles)

4.2 Plays and playbooks

A play P is a predefined team plan which executes a sequence of tactics Ti per
robot. The playbook contains a selection of N plays: {P0, P1, ..., PN}, this se-
lection can specifically be chosen before a game, dependent on the opponent.
During a game, one playbook is used. The active play is selected based on the
world state. One of the two designed plays for this work, is given by Table 2.
The play set-up is similar to the set-up designed by the CMDragons (Table 1).
Preconditions and invariants are defined as world state conditions such as ball
possession (ourBall), ball location (ballZone) and number of active opponents.
Furthermore, the set of roles R is given with several parameters. First the type
of role, which includes the sequence of tactics {T1, T2, ..., TN}. Secondly, a tar-
get position, which is used for role assignment. The sequence of the N roles



given by the play R = {r1, r2, ..., rN} indicates the priority of each role when
assigning roles to the set of robots P. In this case, the AttackerMain is the most
important role and the Defender the least important. Section 4.4 discusses this
role assignment. Finally, in this play role 1 and 2, the two AttackerAssist roles,
are assigned to a specific zone in the field. While positioning during the play
execution, the role is bounded to this zone. Figure 3 shows the specified zones
and target positions for the roles.

Table 2: An offensive play designed for MSL with three offensive robots and one
defensive robot
AttackWithThree

PRECOND ourBall && ballZone1 && 4
INVARIANTS ourBall
role[0]

Goalkeeper
GOAL

role[1]
AttackerMain
BALL POS

role[2]
AttackerAssist
PENALTYAREA CORNER LEFT
ZONE A

role[3]
AttackerAssist
PENALTYAREA CORNER RIGHT
ZONE B

role[4]
Defender
{0, -CIRCLERADIUS}

4.3 Play selection

For selection of a play from the playbook {p1, p2, ..., pN}, first the game state is
evaluated. The game state is evaluated for all preconditions of the plays, such
as the number of opponents and the ball location in field. Each robot evaluates
these preconditions individually based on the shared worldmodel.

Where in SSL play selection is done by one coordinator, the play selection
in a distributed system is done by each robot individually. The robot compares
the game state conditions with the preconditions in the plays. In this work, the
playbook consists of two plays in addition to the default play. If no preconditions
match the world state conditions, default game play is executed. When the world



Fig. 3: Target positions for roles are indicated with a cross. The AttackerAssist
roles are bounded for positioning to zone A and B.

state conditions do match the preconditions, the matching play is selected. To
successfully execute a team plan, it is relevant that the team agrees on executing
the same play. Therefore, each robot communicates the selected play with peers
such that robots can individually determine whether its chosen play is correct.
Each robot gathers the communicated selected plays in one list and sorts the
selected plays. From this sorted list, the most common play is found (the mode).
This play is feasible if the play is chosen by more than half of the number of
active robots. If the mode is not feasible, no play will be selected and default
game play is executed. If the mode is feasible, each robot will select the mode
as the selected play.

4.4 Distributed role assignment

Once the optimal play has been selected given the state of the world, the roles
for that play must be filled by the different robots. This is done following the
current role assignment algorithm used by Tech United. The role assignment is
based on the distance of the current robot position x(ρi) to the fixed role position
of the selected refbox task x(rj). Depending on the number of active robots N ,
N roles are assigned based on priority R = {r1, r2, ..., rN}. Each robot computes
a cost matrix C with the distances from each robot ρi to role rj : C : P×R→ R.
Then, computations are done to determine the optimal role assignment where
the total to be travelled distance by the robots from current position to role
position is minimal: C(

∑
ρi ∈ P[Ci]). To ensure all robots have the same role

assignment, such that all roles are begin executed, all robots communicate their
optimal role assignment. Currently, from these role assignment calculations, the
role assignment of the active robot with lowest ID is used to divide the roles
optimally.

4.5 Tactics execution

To execute the selected play, a sequence of tactics is performed by each role.
Algorithm 2 shows an example of the tactics to be performed by the Attacker-
Main role. A tactic may involve decision making, –e.g. choosing a pass receiver as



shown in the example. To complete the tactic, a set of skills is selected using the
function doAction. Tactic transitions take place either after finishing a tactic, –
e.g., when the AttackerMain possesses the ball the role transits into the give pass
state, or when a peer robot completes a certain tactic, –e.g., when the Attack-
erMain possesses the ball, the AttackerAssist roles transits to the receive pass
tactic. Therefore, communication is also required while executing tactics.

Algorithm 2 Sequence of tactics to be executed by the AttackMain.

1: switch AttackerMain.tactic do
2: case intercept ball
3: doAction(intercept ball)

4: case give pass
5: pass receiver ← choosePassReceiver()
6: doAction(shoot at target, pass receiver)

7: case wait to end play
8: target← findOptimalPosition()
9: doAction(go to target, target)

5 Simulations and results

The integration of STP in the Tech United software is empirically evaluated with
simulations. Two offensive plays were integrated, each for different world state,
where the ball location precondition differs. Figure 4a show these ball locations.
Play 1 will be executed when the ball is located in zone 1. Play 2 when the ball
is located in zone 2. For all other ball locations, regular offensive game play, as
explained in Section 2, is executed. The simulations are attacks from one of these
zones with 4 robots: one goalkeeper and the first three roles defined by the play.
These attackers are the black robots in Figure 4a. The attacks are performed
against two defenders, the red robots in the Figure. The results of 60 attacks
using the STP integration, are compared to the results of 60 attacks playing
without STP.

5.1 Results

The difference in the attack using STP and not using STP is shown in Figure 4.
The black robots are the attacking robots, the two red robots the defenders and
the ball is orange and located in zone 1. The two defenders defend in between
the ball and home goal. They follow the ball and try to block and intercept
passes from the attackers. Figure 4b shows the positioning before the attackers
are in ball possession. The AttackerMain (AM) intercepts the ball while the At-
tackerAssist (AA) roles are positioning within their assigned zone. The target



positions for the AA roles are indicated with the blue cross, the red cross indi-
cates the target position of the AM. The difference with the attack without using
STP, as shown in Figure 4c, is that two robots are positioning on the adversary’s
half. In Figure 4c can be seen that the AM intercepts the ball, while only one AA
is positioning on adversary’s half and the DefenderMain (DM) on their own half.

(a) For ball in zone 1,
play 1 is executed, for ball
in zone 2, play 2 is exe-
cuted. For all other situ-
ations, regular game play
is executed. Black robots:
attackers, red robots: de-
fenders.

(b) Attack with STP: AM
intercepts the ball (target
red cross), AA’s position
in given zone (target blue
cross).

(c) Attack without STP:
AM intercepts the ball,
AA positioning on oppo-
nent half, DM positioning
on own half.

Fig. 4: Simulations of attacks using STP and not using STP. Black robots are
attackers, red robots defenders.

The results of the attacks from the two zones are given in Figure 5. Attacks
were performed from each of the given zones (Figure 4a). When the attacking
team made four passes, the attack was rated as ball possession for the team. If
the attack finished before these four passes, the attack results either in a goal, a
goal attempt or the ball was lost. For both plays the similar conclusions can be
drawn.

The total number of lost balls, either a failed pass or an interception by the
opponent, is equal for both the STP integration and no STP integration. There-
fore, it can be concluded that the STP integration does not have an influence
on this parameter. Furthermore, attacking without the plays, resulted mostly in
ball possession for the team, the attackers did not find the chance to shoot at



goal. Using the STP integration on the other hand results in significantly more
goals and goal attempts.

(a) Attacks from zone 1. (b) Attacks from zone 2.

Fig. 5: Comparison of 60 attacks between a team using STP and a team not
using STP. Graph shows results after max. 4 passes starting in the zone: goal,
goal attempt, ball possession or the ball was lost.

6 Conclusions and future work

This paper presented a novel effort in adapting team-level strategy from the
centrally-controlled Small Size League of RoboCup to the distributed Middle
Size League. In particular, the Skills, Tactics and Plays (STP) team-planning
architecture was successfully integrated in the Tech United team. The main chal-
lenges for this integration were the agreement on a common team plan to execute
and optimally assign the team plan roles to the active robots. Voting-based ap-
proaches were used to overcome these challenges. Each robot individually selects
a play and computes the costs for optimal role assignment. Both are commu-
nicated among all robots. The most common selected play is chosen by each
robot and role assignment is computed based on an averaged cost matrix. Both
methods are proven to be robust by the performed simulations.

Simulations with and without the STP integration were performed. Three
robots performed attacks against to adversary’s for game state situations for
which two plays were designed. The results showw a significant improvement
while applying appropriately-offensive play for specific game situations chosen
for this work: ball possession in zone 1 and 2.

This work shows a successful cooperation between two different RoboCup
leagues. While the SSL has been developing strategy algorithms for fast-paced
team play over the years, in MSL teams have been focusing on controlling a
distributed team. Integrating a well-developed strategy algorithm from the SSL,
such as STP, into the MSL, helps the league many steps forward. Such collabora-
tions, where knowledge and algorithms are shared among leagues, are desirable
in order to accomplish the ultimate RoboCup goal: beating the human World
Cup winner of 2050 with a fully autonomous humanoid robot soccer team.
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