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Abstract. Vision-based motion detection, an important skill for an au-
tonomous mobile robot operating in dynamic environments, is particu-
larly challenging when the robot’s camera is in motion. In this paper, we
use a Fourier-Mellin transform-based image registration method to com-
pensate for camera motion before applying temporal differencing for mo-
tion detection. The approach is evaluated online as well as offline on a set
of sequences recorded with a Care-O-bot 3, and compared with a feature-
based method for image registration. In comparison to the feature-based
method, our method performs better both in terms of robustness of the
registration and the false discovery rate.
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1 Introduction

Autonomous mobile robots are expected to operate in dynamic environments
with other agents such as humans, robots, pets etc. This is especially true for
service robots that work in a home environment, such as in RoboCup@Home,
and for outdoor robots that need to navigate through traffic and pedestrians.
Moving objects in such environments can add to the complexity of certain tasks
such as navigation, scene understanding and action monitoring; however, motion
can also be an important cue for interpreting the environment and understanding
the effects of actions.

While motion can be detected by infrared sensors, radars etc., vision-based
motion detection is a practical and cheap solution for robots, and is a well-studied
field, especially in the context of video surveillance systems. For a stationary
camera, the methods used in video surveillance systems can be directly applied
and used for detecting motion. However, robots often need to detect motion
while they are in motion (egomotion); in such cases methods that rely on a static
camera cannot be used directly because from the point of view of the robot, the
entire image of the scene appears to be moving as the robot is moving.



Consider the two images in Fig. 1, which includes forward motion of the
camera and a falling toy. As humans, our attention is naturally drawn to the toy
even when we are moving, since it provides us with a visually salient stimulus [1,
p.41]. However, from a 2D image perspective, the entire scene has changed; the
red arrows indicate the direction of apparent motion in the image due to camera
motion and the green arrow indicates the direction of motion of the toy. The
apparent motion of the scene follows a pattern, while the motion of the toy
can be seen as an anomaly in this pattern (i.e. it is contrary to the expected
egomotion-induced optical flow), and hence an indicator for the robot that some
action is required. Detecting this motion is a challenging task for a robot as it
involves being able to distinguish between global changes in the scene caused to
its own motion and local changes due to the movement of other objects.

(a) Frame 1 (b) Frame 2

Fig. 1: Camera motion and independent motion (yellow circle) between frames

This paper tackles the problem of using 2D vision methods for detecting
independent motions in the environment when the observer (a robot) is also
moving through the environment. We approach this problem by combining ex-
isting methods: the Fourier-Mellin transform (FMT) [2] for compensating camera
motion and temporal differencing for motion detection. The algorithm is able to
run close to real-time on a robot.

The paper is structured as follows: Section 2 discusses related work, Section 3
explains the proposed approach, Section 4 discusses the results, along with a
comparison to a feature-based method, and finally conclusions and future work
are discussed in Section 5.

2 Related Work

The majority of the literature regarding motion detection considers scenes from a
static camera, with some approaches allowing for slight camera motions; however,
there has been an increase in vision-related work with camera motion due to the
importance of autonomous driving and driver assistance systems [3].



For static cameras, methods such as background subtraction, temporal dif-
ferencing and optical flow are well known for motion detection. However, none
of these methods, used in isolation, are applicable for moving cameras since the
majority of the changes in the scene would be caused by camera motion. Some
methods [4–6] compensate for camera motion before applying differencing or
optical flow to detect motion. Camera motion is typically compensated by first
calculating optical flow or tracking features between frames, followed by selection
of inlier vectors that best describe the dominant motion. The transformation es-
timated using the inlier vectors is then used to align the frames, minimizing the
differences between the two frames due to camera motion.

Badino et al. [6] estimate 6D egomotion using optical flow calculated from
stereo cameras. The computed egomotion is used to compensate the flow vectors
such that only moving objects have large vectors. Kim S.W. et al. [7] use the
Lukas-Kanade tracker both for camera motion compensation and for continu-
ously updating a background model, and subsequently use background subtrac-
tion for motion detection. Meier et al. [8] use inertial-optical flow for egomotion
and object motion estimation. Tracked features are classified as outliers and in-
liers based on whether they agree with the global motion seen in the image.
The authors use the outliers specifically to detect and characterize the motion of
independently moving objects. Kumar et al. [9] use machine learning to predict
optical flow statistics (mean and covariance) given the head and eye velocities
of the iCub robot. Moving objects are detected by comparing their flow vectors
to the learned statistics.

Convolutional Neural Networks (CNNs) have also been used for compensa-
tion egomotion: Tokmakov et al. [10] train a network that uses ground truth
optical flow to detect independently moving objects from a moving camera.
Rezazadegan et al. [11] perform action recognition on moving cameras by first
centering the person of interest. Agrawal et al. [12] compute the transformation
between sequential images due to camera motion by using a Top-CNN which
receives input from two identical Base-CNNs (one for each image).

A common theme in the related work is the use of optical flow or feature
tracking methods, which rely on detecting good features. Apart from the work
by Kumar et al. [9], there are no published results of extensive evaluation in
different scenes or with varying parameters. Additionally, the hardware, frame
rate, image size are often not reported, making it difficult to determine whether
the methods can be run on a mobile robot.

Adjacent fields, such as visual odometry and structure-from-motion, essen-
tially try to solve a similar problem: that of estimating camera motion. Most
approaches in these fields also rely on detecting and tracking good features, but
other methods have also been explored. For example, FMT has been used for
visual odometry [13, 14] and found to be equally good or better than optical
flow methods. The advantage of Fourier-based methods is that they are not de-
pendent on finding good features and are robust to some lighting changes and
frequency-dependent noise. The FMT approach calculates the similarity trans-
form, which is a simplification of the affine and perspective transforms, which



also makes it a better candidate for running on a robot with limited resources.
We assume, as in other related work, that moving objects constitute less than
half the image; i.e. the apparent motion of the scene due to camera motion is
the dominant motion.

3 Approach

Since it has already been successfully used in visual odometry, we decided to
use FMT to compensate camera motion. Additionally, in order to avoid calcula-
tion of features and optical flow, we then use temporal differencing for detecting
independent motions. Our approach is based on a vision pipeline that has two
stages: 1) FMT is used to compute the transform between consecutive frames,
which is then used to align them, hence compensating camera motion. 2) Tem-
poral differencing is performed on the aligned frames to detect moving objects.

I. Image registration using FMT: Image registration is the process of
transforming an image to geometrically align it with a reference image. FMT
was first used for image registration by Reddy et al. [2]. It is an extension of
the phase correlation method and can simultaneously retrieve the rotation, scale
and translation between images; i.e. it estimates the similarity transform for a
given pair of images. The steps of the method can be seen in Fig. 2.

Fig. 2: Top: FMT image registration pipeline. Bottom: Phase correlation block
which is used twice in the registration pipeline.



FMT-based image registration itself is a two-step process; the first step esti-
mates the rotation and scale and the second estimates the translation. In both
steps, phase correlation is used to find the translation between two images. In the
first step, the input images to the phase correlation step are the log-polar trans-
forms of the discrete Fourier transforms of the grayscale images (im0 and im1)
to be registered. The estimated shift in the log-polar images (x, y) is converted
into rotation θ and scale s and used to transform im0.

This transformed image im2 and the reference image im1 are the inputs to
the second phase correlation step. The estimated translation from the second
phase correlation step is used to transform im2 again. This resultant image im3
is now registered with the reference image im1.

Fourier-Mellin transform: The FMT of a function f(r, θ) is given by [13]:

Mf (u, v) =
1

2π

∫ ∞
0

∫ 2π

0

f(r, θ)r−jue−jvθdθ
dr

r
(1)

where the elements in bold are the Mellin transform parameters and the remain-
ing ones are the Fourier transform parameters.

By substituting r = eρ, the FMT can be expressed as just a Fourier trans-
formation [13]:

Mf (u, v) =
1

2π

∫ ∞
−∞

∫ 2π

0

f(eρ, θ)e−juρe−jvθdθdρ (2)

Log-polar transform: In practice, the variable substitution is realized us-
ing the log-polar transform. The log-polar transform is performed by remapping
points from the 2D Cartesian coordinate system (x, y) to the 2D log-polar coor-
dinate system (ρ, θ) [15]:

ρ = log(
√

(x− xc)2 + (y − yc)2)

θ = atan2(y − yc, x− xc)
(3)

where ρ is the logarithm of the distance of a given point, (x, y), from the centre,
(xc, yc), and θ is the angle of the line through the point and the centre. This
transform converts rotation and scaling in the Cartesian coordinate system to
translations in the log-polar coordinate system.

Phase correlation: Phase correlation, introduced by Kuglin et al. [16], is a
global method that can retrieve the translation between two images. The method
is based on the Fourier shift theorem, which states that shifting a signal by τ
in the time/space domain multiples the Fourier transform by e−jωτ . The phase
difference can be calculated by using the normalized Cross Power Spectrum
(CPS) in Eq 4 [2],

f2(x, y) = f1(x− tx, y − ty)

F2(ξ, η) = e−j2π(ξtx+ηty)F1(ξ, η)

CPS = e−j2π(ξtx+ηty) =
F1(ξ, η)F ∗2 (ξ, η)

|F1(ξ, η)F2(ξ, η)|

(4)



where F1 and F2 are the Fourier transforms of f1 and f2, and ξ and η are the
spatial frequencies in x and y.

The term e−j2π(ξtx+ηty) is equivalent to the Fourier transform of a shifted
Dirac delta function; hence, if we take the inverse Fourier transform of CPS, the
result is a signal with a peak at (tx, ty). By finding the location of the peak we
retrieve the translation between the two images.

Rotation ambiguity: Since the Fourier magnitude plots are conjugate sym-
metric, there is an ambiguity in the recovered rotation. If the calculated rotation
angle is θ, the actual rotation of the image could be θ or θ + π. For this appli-
cation, we assume that consecutive frames are never rotated by more than π
radians and hence do not perform an extra step to resolve the ambiguity.

High-pass filtering: During the phase-correlation step, apart from the peak
at the actual rotation angle, there are additional peaks at multiples of 90◦.
Sometimes the peak at 0◦ is higher than the peak at the required rotation angle.
Both [17] and [2] suggest applying a high-pass filter in the Fourier domain to
prevent the false peak at 0◦.

II. Motion detection using temporal differencing: We use temporal
differencing for motion detection, and additional operations, such as threshold-
ing, edge masking and clustering of contours, are used to eventually output a
set of bounding boxes representing independently moving objects in the scene
(see Fig. 3). Temporal differencing is performed by taking the absolute difference
of the pixel intensities between the registered frame im3 and the current frame
im1. A binary threshold is applied on the difference image with intensities above
the threshold being set to 255 (white) and those below being set to 0 (black),
hence selecting pixels where a large difference is seen.

Fig. 3: Motion detection pipeline

Edge mask: Edges are regions in the image where there are discontinuities in
the pixel intensities. If the images are imprecisely registered, the edges might not
overlap exactly with each other. This will result in large values in the difference
image and will likely be present in the thresholded image (such as the stripes of
the sofa in Fig. 4b). In order to remove the edges (false detections), we construct
an edge mask from the thresholded image by first applying Canny edge detection
to the thresholded image and fitting contours to them. Oriented rectangles are
then fit to the contours and are classified as edges if the aspect ratio is very high
or very low. The rectangles which are classified as edges are then masked out as
seen in Fig. 4c. It is also worth noting that this process causes some degradation



in the detection of the moving stuffed toy as well; this is discussed further in the
evaluation.

(a) Scene (b) Before mask (c) After mask

Fig. 4: Edge mask on a scene with egomotion and independent motion

Clustering: In order to separate the resultant threshold image into a set of
regions, we cluster the white pixels based on their distance from each other. This
is done by first finding contours, and then applying Euclidean clustering on the
contour points.

Small clusters are discarded and bounding boxes are fit to each cluster. Some
bounding boxes are ignored if the ratio of white to black pixels is low. The
intermediate outputs from the motion detection pipeline can be seen in Fig. 5.

Fig. 5: The main steps of the motion detection pipeline: Top: previous, current
and registered frame. Bottom: thresholded image, edge-masked image, bound-
ing box of clustered contour points



Runtime: An open-source Python implementation of the FMT image regis-
tration method1 was found to be too slow for our application (1.6 Hz). Our C++
port2 is able to process 320x240 images at 14.5 Hz on an Intel Core i3, 1.7 GHz
processor, while the overall motion detection pipeline runs at 11 Hz.

4 Evaluation

For evaluation, we collected fifteen image sequences and annotated them with
ground truth (GT) bounding boxes of moving objects. A Care-O-bot-3 with a
head-mounted ASUS Xtion Pro 3D camera was used for recording the sequences.
All sequences involve robot egomotion (linear: 0-0.3 m/s, angular: 0-0.3 rad/s)
and the set of moving objects in the scene includes humans, doors and a stuffed
toy. The experiments are run on the recorded sequences, but the algorithm is
able to run on the robot as well with a ROS (Robot Operating System) wrapper.

In [18], the authors discuss evaluation methods and metrics for motion de-
tection algorithms, suggesting the following for object-based metrics:

– True Positive (TP): “A detected foreground blob which overlaps a GT bound-
ing box, where the area of overlap is greater than a proportion Ωb of the blob
area and greater than a proportion Ωg of the GT box area.”

– False Negative (FN): “A GT bounding box not overlapped by any detected
object.”

– False Positive (FP): “A detected foreground object which does not overlap
a GT bounding box.”

We use these definitions and choose Ωb = Ωg = 0.5. We regard a single GT
object that is overlapped by multiple detected bounding boxes as a true positive
(given that the total overlap proportion criteria holds). Since the definitions
have been modified, TP + FN does not equal the number of GT objects (as is
usually the case). A TP in this case is an object that has been reliably detected,
whereas a FN is an object that has not been detected at all. This gives us two
ways of interpreting the results: one which considers objects reliably detected
(true positive rate, TPR), and one which considers objects not detected at all
(false negative rate, FNR). These two metrics and the false discovery rate, FDR,
are defined as:

TPR =
NTP
Ngt

, FNR =
NFN
Ngt

, FDR =
NFP
Nd

(5)

where NTP , NFN , NFP , Ngt and Nd are the number of true positives, false
negatives, false positives, ground truth objects and detected objects.

4.1 Experiments

Six sequences are chosen for the first two experiments since they cover both
translational and rotational robot motion, and different types of object motions.

1 https://github.com/matejak/imreg_dft
2 https://github.com/sthoduka/fmt_motion_detection

https://github.com/matejak/imreg_dft
https://github.com/sthoduka/fmt_motion_detection


Experiment 1: Frame rate For this experiment, the frame rate of the camera
is kept constant at 30 Hz, but, by skipping frames, the effective frame rate of
the algorithm is altered. This results in larger differences between frames (due
to motion) at slower frame rates without additional effects like motion blur. As
seen in Figure 6, the frame rate has a large impact on the performance, most
significantly when halving the frame rate to 15 Hz. Although in most cases 6 Hz

Fig. 6: Impact of altering time between consecutive frames

results in the best TPR, the FDR also rises significantly at this frame rate. The
object-level annotation is also a cause of the poor performance at higher frame
rates: at 30 Hz, the small motions of parts of objects are detected instead of the
motion of the entire object, which is observable at lower frame rates. Overall,
this result suggests that the frame rate of the algorithm should be dynamically
altered based on the speed of the robot and expected speed of the objects.

Experiment 2: Edge mask In general, applying the edge mask to the thresh-
olded image reduces both the TPR and FDR, as seen in Fig. 7. Depending on
the application, reducing the false detection rate to nearly zero at the expense
of a decrease in true positive rate can be an acceptable compromise.

Fig. 7: Impact of applying an edge mask on the difference image



Comparison with a feature-based approach Here, we compare the results
of the FMT method to a feature-based method. The monocular camera code
from LIBVISO2 [19] is used for feature extraction and matching and the inlier
vectors are used to estimate an affine transformation between consecutive frames.
This affine transform is used to register the frames, after which the temporal
differencing pipeline is used for motion detection. For both methods, we use the
same parameters for temporal differencing, use frames of size 320x240, and skip
every two frames (10 Hz effective frame rate). The experiments are run on a PC
with an Intel Core i3, 1.7 GHz processor and 4 GB of RAM. The results of the
comparison are seen in Table 13.

Table 1: Detection rates for the FMT and feature-based methods

FMT Feature-based

Sequence TPR FNR FDR TPR FNR FDR

01 0.6 0.07 0.03 0.47 0.1 0.24
02 0.17 0.83 0.0 0.25 0.75 0.0
03 0.38 0.59 0.07 0.31 0.5 0.0
04 0.38 0.37 0.05 0.33 0.45 0.02
05 0.3 0.29 0.09 0.23 0.46 0.1
06 0.5 0.39 0.0 0.48 0.41 0.11
07 0.59 0.29 0.09 0.62 0.28 0.18
08 0.16 0.77 0.04 0.06 0.8 0.15
09 0.29 0.52 0.0 0.3 0.5 0.03
10 0.82 0.05 0.08 0.79 0.07 0.19
11 0.46 0.12 0.04 0.38 0.12 0.14
12 0.48 0.52 0.0 0.45 0.48 0.0
13 0.03 0.95 0.0 0.03 0.95 0.0
14 0.72 0.14 0.01 0.74 0.13 0.04
15 0.45 0.47 0.04 0.41 0.52 0.05

The TPR and FNR are comparable for the two methods; the sequences where
the motions are far away or short and quick tend to have low TPR and high
FNR in both cases. The reason for the higher FDR for the feature-based method
is evident from Fig. 8, which shows the x and y translations for sequence 10. The
sequence consists of the robot rotating to the left at a constant speed (0.3 rad/s),
with some people moving in the scene. The FMT method shows a relatively
constant translation in x and no translation in y, whereas the feature-based
method is a lot noisier, with some large spikes; these spikes most likely account
for the increased FDR. Similar behaviour was seen in the other sequences as
well. The FMT method is able to run at about 11 Hz, while the feature-based
method runs at 12 Hz, with comparable CPU and memory usage. This suggests
that the FMT method is more robust while using the same amount of resources.

3 All output videos can be found here: https://www.youtube.com/playlist?list=
PL1rZfrn4gV_jc-Y3FdsEujE6RfWYi20gy

https://www.youtube.com/playlist?list=PL1rZfrn4gV_jc-Y3FdsEujE6RfWYi20gy
https://www.youtube.com/playlist?list=PL1rZfrn4gV_jc-Y3FdsEujE6RfWYi20gy


Fig. 8: Pixel translations for sequence 10 along the x-axis (left) and y-axis (right)
for the FMT and feature-based methods.

5 Conclusions and Future Work

In this paper, we combined existing approaches for independent motion detection
from a moving camera. The Fourier-Mellin-based image registration method was
used for egomotion compensation and temporal differencing for motion detec-
tion. Unlike other methods, FMT does not rely on the detection of good features,
which is one of its advantages. For the set of sequences evaluated, a frame rate
of 10-15 Hz was found to be ideal for the detection rate; at 30 Hz, motions be-
tween frames are sometimes too small to be detected. The algorithm processes
frames at 11 Hz, which allows it to be run close to real-time on a robot within
the range of the ideal frame rate. In comparison to a feature-based method, it
performs better in terms of robustness of the registration and the false discovery
rate. A more systematic evaluation is required to determine the limits on object
and camera motion speed, depth variance of the scene and depth of the moving
objects. Dynamically varying the frame rate based on the speed of the robot
and applying the motion detection output to a task of the robot, such as safe
navigation or turning towards a waving person, is future work.
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