
Proposed environment to support development
and experiment in RoboCupRescue Simulation

Shunki Takami1, Kazuo Takayanagi1, Shivashish Jaishy1, Nobuhiro Ito2,
Kazunori Iwata3, Yohsuke Murase4, and Takeshi Uchitane5

1 Graduate School of Business Administration and Computer Science,
Aichi Institute of Technology, Japan

2 Department of Information Science, Aichi Institute of Technology, Japan
3 Department of Business Administration, Aichi University, Japan
4 RIKEN Advanced Institute for Computational Science, Japan
5 Research Institute for Economics and Business Administration,

Kobe University, Japan

Abstract. The RoboCupRescue Simulation project is a test bed for
multi-agent systems research for disaster relief. However, researchers have
to implement many types of algorithm and require a complicated proce-
dure for experiments, which places a heavy burden on them. Therefore,
we propose an environment that integrates an agent-development frame-
work and an experiment-management system to support researchers.

Keywords: Programming environment, Experiment management, Res-
cue simulation

1 Introduction

In recent years, the annual RoboCup international robotics competition has
hosted the RoboCupRescue Simulation (RRS) project to confront large-scale
natural disasters [1]. In particular, the Agent Competition is a platform for
studying disaster-rescue agents and simulations. Our aim is to contribute to
society by submitting results for this project.

However, in order to solve the disaster-relief problem targeted by the RRS, it
is necessary to implement a combination of multiple algorithms such as those for
path planning, information sharing, and resource allocation. In the experiment,
numerous simulations are required for multiple disaster areas and changes in the
various conditions of the area, such as fire, building collapse, and communication.
Because these are burdensome for researchers, we propose an environment that
integrates an agent-development framework and an experiment-management sys-
tem. In the evaluation, we confirm that code re-usability and researcher burden
were reduced in the experiment.

2 Research and development in RRS

2.1 Overview of RRS
The RRS is a research platform that simulates disaster situations and disaster-
relief activities on a computer. It can handle disaster-relief activities over roughly
five hours from the occurrence of a disaster.



2

Buried citizen

Blockages Clearing

Rescuing victim
Blockage

Burning buildings

Evacuees

Civilian
PoliceForce
FireBrigade
AmbulanceTeam

Road
Building

Fire extinguishment

Fig. 1. Overview of RRS

Figure 1 shows the activities of agents in the RRS. In the disaster-relief
activities, we control six types of agents, namely AmbulanceTeam, FireBrigade,
PoliceForce, and the headquarters of each of these units. In addition, there are
agents to simulate disaster situations, namely Civilian agent.

– AmbulanceTeam and AmbulanceCentre
These agents rescue other agents that cannot move by themselves.

– FireBrigade and FireStation
These agents extinguish fires in buildings.

– PoliceForce and PoliceOffice
These agents clear road blockages.

– Civilian
In the competition, this agent moves automatically to evacuation centers.

By using the RRS, it is possible to research applications of artificial intelli-
gence and information science to natural-disaster rescue problems. Researchers
have been investigating algorithms for route searching, information sharing, and
task allocation in a disaster situation. In the RRS project, five tasks are advo-
cated especially, namely Group Formation, Path Planning, Search, Multi-Task
Allocation, and Communication. Every year, competitions using agent programs
are held for the purpose of technical exchange.

2.2 Agent development in RRS

The disaster-relief problem handled by the RRS is a complex problem as the
damage situations, such as fire, building collapse, and the availability of wire-
less communication, change from moment to moment in afflicted areas. These



3

changes are addressed by the disaster-relief strategies of teams of disaster-relief
robotss that differ according to the disaster situation. To construct a disaster-
relief strategy, it is necessary to prepare all the algorithms for tasks such as
route searching, information sharing, and resource allocation in the disaster en-
vironment. Moreover, in activities such as the PoliceForce clearing blockages, it
is necessary to use angles and coordinates to specify the direction for activity
and the positions of the agents.

To promote research involving the RRS, it is necessary to clarify the structure
of a complicated disaster-relief problem and subdivide it before solving it.

2.3 Experiments in RRS

To develop and evaluate RRS agents, it is necessary to conduct experiments on
multiple disaster areas while considering various conditions such as the locations
of fires, the rate at which buildings collapse, and communication situations. Also,
the parameters of an agent may be set for each of these situations. All this
requires numerous simulations.

In the RRS, each simulation takes around 20 min to execute. Thus, multiple
computing hosts may be simulated simultaneously to improve the efficiency of
the experiment. It is common to distribute the agent process to more computers
in one simulation, so it is necessary to control all these computers simultaneously.
However, since the time synchronization between the simulator components is
based on the command transmission of the kernel, there is no need to externally
control it. Therefore, we externally control just the activation and termination
of components.

2.4 Related work

OpenRTM-aist OpenRTM-aist[2] is a framework for robot development that
was developed by the National Institute of Advanced Industrial Science and
Technology and whose implementation is based on the RT-Middleware stan-
dard [3]. This common platform standard divides robot elements such as actu-
ator control, sensor input, and algorithms necessary for behavior control into
single components (This is called RT-Component:RTC), and then constructs a
robot by combining all such components. This makes it possible to subdivide the
elements that are necessary for controlling the robot. Because each component
can be exchanged as a module and existing modules can be included, it is pos-
sible to reduce the burden on developers in the development and improvement
of robots.

Because RT-Middleware is applied mainly to real robots, it is suitable for
developing robots that are controlled in real time. It is difficult to utilize existing
code and knowledge when adopting RT-Middleware because RRS agents are
programed mainly with a sequential structure.



4

Hinemos Hinemos is software that was developed by NTT Data Corporation
to monitor and manage the job execution of multiple computing hosts [4]. We
can automate the execution of an experiment by treating the experiment as each
process, and it is also possible to manage the execution on multiple calculation
hosts. Hinemos allows the management of issues such as job exit codes, job
stylization, advanced experiment scheduling, and GUI execution management.
However, because Hinemos is high-function general-purpose software used for
various computer-based business tasks, it has a high operational cost if used for
RRS experiments.

OACIS OACIS is a simulation-execution management framework developed
by the discrete-event-simulation research team of the RIKEN Advanced Institute
for Computational Science [5]. This software manages jobs in a similar way to
Hinemos. In particular, it has a job-management function that specializes in the
simulation and management of experiment results, and a function that specializes
in the execution of simulations. It is possible to use OACIS to support numerous
simulations and to perform analysis with various conditions by managing the
experimental parameters and automatically managing the results.

However, because OACIS is a general-purpose system for various types of
simulation software, complicated operations are required to execute RRS simu-
lations. The creation of simulation scripts, the agent programs, and the map and
scenario files must be managed by other methods, making OACIS complicated
to use for the RRS.

3 Proposal and implementation

3.1 Research objective

In this paper, which is based on the current state of RRS agent development
and experiments, we implement an agent development framework by introduc-
ing a modular structure to clarify and solve the complicated problems associated
with disaster relief. We also propose the framework as our community standard,
which makes it easy to reuse program code. Furthermore, to reduce the experi-
mental burden, we implement an RRS experimental environment that is based
on the OACIS simulation-execution management framework. We then combine
the agent framework and the RRS experimental environment. Finally, we pro-
pose an environment that offers comprehensive support for agent development
and experiments.

3.2 Proposal of environment to support development

Design of agent-development framework In order for many researchers
to clarify and solve complicated problems, we modularize part of the program
code. To make it easier to reuse the program code and to reduce the burden
on researchers, an agent-development framework is desired. A framework-design



5

Fig. 2. Before and after introducing common architecture

method based on OpenRTM-aist (mentioned in Sect. 2.4) would also be con-
ceivable. However, RRS agents are programmed in a sequential structure, so we
propose and design a unique Agent Development Framework (ADF) that makes
it easier to utilize existing program code and knowledge.

Introduction of a common agent architecture By defining the overall
behavior of an agent as a common architecture, we reduce the differences in
combinations of components by each developer and ensure re-usability. This
allows developers to implement modules based on this common architecture
when developing agent programs.

Figure 2 shows the architecture before and after introducing this common
architecture. The left-hand portion of the figure shows the existing agent struc-
ture, whereas the right-hand portion introduces the common architecture. The
portability of the existing program is low because each researcher builds an agent
program independently according to individual research agendas. We have com-
monized the agent-program structure, which is the shaded part of the figure, so
that the program code can be re-used easily. Also, this unifies the communica-
tion protocol between agents and enables communication with agents developed
by others.

Modularization of program code As with the RT-Middleware discussed
in Sect. 2.4, component modularization is introduced to reduce the burden on
researchers and to make it possible to reuse the program code used in agent
development.

– Algorithm modularization
At the present stage of modularization, we divide as much as possible

based on the five tasks presented in the RRS project. Figure 3 shows the



6

Fig. 3. Relationship between RRS tasks and ADF components

relationship between RRS tasks and ADF components. The top portion of
the figure contains five tasks, and the bottom portion contains the frame-
work components. We classify algorithms for solving complex problems and
algorithms for solving simple problems as Complex Modules and Algorithm
Modules, respectively, thereby clarifying the directionality of each module.
We view algorithms to solve complex problems (Complex Modules) as ag-
gregates of simple problems. Thus, the modules should be programmed by
dividing the structure inside the program code as much as possible. More-
over, if it is found empirically that the program can be divided in the future,
we aim to clarify complicated problems as new modules.

– Modularization of control program
As described in Sect. 2.2, it is necessary to control an agent by specify-

ing such properties as its coordinates and angles. Low-level agent control is
modularized as a control program. By separating macro algorithms such as
decision making and micro algorithms such as control using the coordinates
and angles, we reduce the burden on researchers who wish to study a single
algorithm such as the decision-making one.

Other approaches By introducing a common architecture for agents, it be-
comes possible to manage the inter-agent communication protocol and various
agent parameters collectively.

– Unifying inter-agent communication protocols
In the RRS, the inter-agent communication protocols are currently not

unified, which strengthens the dependency between components makes it
difficult to modularize the algorithm. Therefore, with reference to the RRS
inter-agent communication protocols proposed by Ota et al. [6] and Obashi
et al. [7], we define a common inter-agent communication protocol. We de-
fine messages communicated under this protocol as members of either an
information-sharing family or a command family. In the information-sharing
family, information about agents, roads, and buildings is shared. In the com-
mand family, commands for relief, fire extinguishing, blockage clearing, and
searching are ordered.

– Collective management of parameters
In the framework, we commonize the parameter-input interface by collec-

tively managing the designation of modules and parameters in the algorithm



7

Fig. 4. Structure of framework

that are to be changed at the time of the experiment. This makes it easy to
input parameters from tools that support the experiments, such as OACIS
described in Sect. 2.4.

3.3 Implementation of agent-development framework

Implementation overview Figure 4 shows the structure of the agent-development
framework that is implemented. The internal aspects of the agent, as represented
by the shaded part in the figure, are implementations of the framework. The
parts indicated by dotted lines are modules, which are the objects to be pro-
grammed at the time of agent development. In this section, we describe each
implementation of the framework based on the design discussed in Sect. 3.2.

Common agent architecture This component defines how agents invoke algo-
rithm modules and control-program modules to determine behavior. This compo-
nent is referred to as Tactics. Each agent determines its behavior by invoking ele-
ments such as task assignment, a route-search algorithm, and a control-program
module within Tactics. In addition, each module is invoked by its alias name
and can select the module to be attached by the agent-configuration file.

Modules In Sect. 3.2 shows that each task is modularized as Clustering, Path-
Planning, or TargetDetector. Also, the control program is modularized as ExtAc-
tion. An instance of the module is created and managed in a component called
the ModuleManager. This further enables switching the module to be used by
loading the module-configuration file (module.cfg) at agent startup.

Collective management of parameters The settings of the module to be
loaded are obtained from the aforementioned file module.cfg. In addition, pa-
rameters in algorithms can be obtained from the DevelopData component, and



8

Fig. 5. Before and after introducing experimental management by OACIS

each value can be input by JSON [8] formatted text as an argument at agent
startup.

3.4 Proposal of environment to support experiments
To realize the RRS experimental-support environment, we introduce experiment
management using the OACIS simulation-execution management framework.

In Fig. 5, the left-hand portion of the figure shows the operations before the
introduction of OACIS experimental management, whereas the right-hand por-
tion shows the operations after its introduction. To experiment with an agent in
the RRS, it was necessary to designate the parameters of various agents, control
computer clusters to execute simulation, and collect and manage numerous re-
sults as indicated by the black points. By introducing experimental management
by OACIS, the work shown in the shaded area in the figure is automated and the
operation performed in experiments can be reduced. Moreover, by automating
the experimental operation, it becomes easier to reproduce the experiment.

However, because OACIS is a general-purpose system, there are insufficient
functions that can be applied to RRS experiments. Therefore, we develop func-
tions to be supplemented when applying OACIS to RRS experiments as an
extension to the RRS. This section describes these supplemental functions. This
solves the complicated problem that OACIS to use for RRS described in Sect. 2.4.

– Agent management
Although OACIS can manage simulators and experimental parameters, it

cannot manage the agent program itself. Therefore, we develop an extension
to manage the agent program.

– Map and Scenario management
OACIS cannot manage maps and disaster scenarios as can agent programs.

Therefore, we develop an extension to manage maps and disaster scenarios.

– Computer cluster management
In the RRS, one simulation is executed in a computer cluster, combin-

ing many computers. Although OAICS supports job execution in computer



9

Fig. 6. Extensions of OACIS for RRS

clusters, it does not conform to the protocol of launching processes required
by the RRS program. We developed a mechanism to adjust an interface to
launch the RRS program using OACIS.

– Simulation script
It is necessary to prepare a script that describes a series of actions in a

simulation, which can be executed from OACIS. This script loads an agent
and MapScenario, connects to each computer of the computer cluster, and
executes the simulation. This enables it to treat experiments as a single job
and enables management by OACIS.

– Simulator management
In OACIS, a simulation script and a set of parameters that can be specified

are known collectively as a Simulator. Parameters change depending on the
purpose of the experiment, such as the agents to be used, the modules to be
used, and the parameters of the algorithms. Therefore, we develop a mech-
anism to register Simulator with OACIS according to various experimental
methods.

3.5 Extensions of OACIS for RRS

In implementing the extension to sustain maintainability, we did not modify
the OACIS body program, which is controlled by the extension part through
an API provided by OACIS. Figure 6 shows a conceptual image of the OACIS
extensions. The shaded areas in the figure are extensions to the RRS.

– Agent management
This extension unit enable to upload the agent program body in the di-

rectory under management. Then, we register and manage the agent’s name



10

and storage location, parameters, comments, and registration date and time
in the database of the extension unit. This enables to manage the agent files
in an integrated way.

– Map and Scenario management
This extension unit enable to upload the map and scenarios in the direc-

tory under management, similarly as with the agents. Then, we register and
manage the name and storage location, comments, and registration date and
time in the database of the extension unit.

– Computer cluster management
Information about the computer cluster is managed in the database of

the extension unit. When executing the simulation, the simulation script is
invoked on the local host and simulation is executed using each computer.
The simulation script connects to each designated computer according to the
configuration file of the computer cluster that is arranged in each working
directory. Therefore, switching of computer clusters in the simulation script
is enabled by changing the working directory of the OACIS computing host.
This enables execution of the simulation using the computer cluster.

– Simulation script
The agent program and the map and scenario used for the simulation are

transferred to each computer using SSH. Then, after executing the agent’s
compilation script, the simulation is started. This script also controls the
activation timing of simulators that are necessary for starting the simulation.
If the script ends normally, exit code 0 is outputted. Otherwise, if abnormal
termination occurs, an exit code other than 0 is output so that OACIS can
judge whether the termination was normal. This enables RRS execution
using OACIS.

– Simulator management
Various kinds of parameters according to identifiers of agents, parameters

of the agents, map, disaster scenarios and so on can be registered as Simulator
in OACIS. A unique pattern of parameters according to OACIS Simulator
can be registered as ParameterSet in OACIS. OACIS ParameterSet includes
the following values which the simulation script and each agent can read.

• Agent program code
• Agent program code + Various modules
• Parameters of algorithms

4 Evaluation

4.1 Purpose of evaluation

With regard to the developmental and experimental support environment pro-
posed in Sect. 3, we developed and tested the agent program at an actual work-
shop to evaluate whether the re-usability of the code and the burden of the
experiment were improved.



11

4.2 Experimental method

At the workshop of the RoboCup Simulation League held at Fukuoka Univer-
sity on October 22–23, 2016, roughly 30 people were divided into six teams
to develop agents using ADF. We conducted an experiment to collaborate and
work in combination with AmbulanceTeam, FireBrigade, and PoliceForce agents
that were developed by each team. In doing so, we confirmed that it was pos-
sible to combine agents developed by different developers in this experiment.
At the workshop, we experimented with only six combinations because of time
restrictions. However, at a later date, we also experimented with a total of 216
combinations.

Table 1. Top eight results of combined experiments (* are reference values)

Rank AT FB PF Score

1 A C A 143.4091
2 A B A 141.4178
3 E B A 140.9280
4 A B F 136.5078
5 E B B 134.8257
6 B B D 134.3782
7 C B D 134.3404
8 B B E 133.8126

Sample Sample Sample 114.2580
A A A 114.2574
B B B 126.5861

(*) C C C 124.3933
D D D 114.2580
E E E 119.9167
F F F 120.8222

4.3 Results and discussion

Table 1 gives the top eight results of the combined experiments of each team
(A–F), those of a sample team, and the results for each team as a reference.
From the results of the experiments, it can be seen that we arrived at good
results even with different teams. In additon, this experiments was conducted
easily because it is just changing modules designation that loading. Therefore,
we find that agents developed using the framework proposed in this paper can
work in cooperation even if they are combined separately.

Moreover, in experimental execution until now, when simulating experimen-
tally in an environment such as a workshop, one operator has basically operated
the simulator directly and has managed aspects such as the simulation results.
In this case, because there were many steps to manipulate, there were cases
in which the results were accidentally not saved. However, no trouble occurred
despite many operators being involved in the operation because the operational
content was simple and automated. This indicates that the burden on researchers
at the time of the experiments can be reduced.



12

Furthermore, we are planning to hold workshops at universities in Italy,
Spain, and France and we will introduce these results and claims to our pro-
posal.

5 Conclusion

In this paper, we proposed an environment as RRS community standard that
integrates an agent-development framework and an experiment-management sys-
tem to support researchers. In the evaluation, we confirmed that code re-usability
was improved and that the burden on researchers during the experiment was re-
duced. We are planning to hold workshops in each country to further confirm the
effectiveness of our proposal. As mentioned in Sect. 3.2, the algorithms for solv-
ing complex problems (known as the Complex Modules) are aggregated from
simpler problems. Thus, in the future, if it is found empirically that the pro-
gram in question can be divided, we aim to clarify complicated problems as new
modules. This will lead to the better resolution of disaster-relief problems. Even-
tually, we aim to return the research results of the RRS project to society by
clarifying disaster-relief problems and proposing individual algorithms that are
applicable to disaster relief.

6 Acknowledgment

This work was supported by JSPS KAKENHI Grant Number JP16K00310 and
JP17K00317. Y. M. appreciates the support by JST CREST and by MEXT as
“Exploratory Challenges on Post-K computer(Studies of multi-level spatiotem-
poral simulation of socioeconomic phenomena)”.

References
1. “RoboCupRescue Simulation”, http://roborescue.sourceforge.net/
2. National Institute of Advanced Industrial Science and Technology, “OpenRTM-

aist”, http://www.openrtm.org/
3. Noriaki ANDO, Takashi SUEHIRO, Kosei KITAGAKI, Tetsuo KOTOKU, Woo-

Keun Yoon, “RT-Middleware: Distributed Component Middleware for RT (Robot
Technology)”, IROS2005, (2005)

4. NTT Data Corporation, “Hinemos”, https://ja.osdn.net/projects/hinemos/
5. Yohsuke Murase, Takeshi Uchitane, Nobuyasu Ito, “A tool for parameter-space

explorations”, Physics Procedia, 57, p73-76, (2014)
6. Takefumi Ohta, Fujio Toriumi, “RoboCupRescue2011 Rescue Simulation League

Team Description”, RoboCup 2011 Istanbul, (2011)
7. Dai Obashi, Toshiyuki Hayashi, Kazunori Iwata, Nobuhiro Ito, “An imple-

mentation of communication library among heterogenous agents NAITO-Rescue
2013(Japan)”, RoboCup 2013 Eindhoven, (2013)

8. ECMA, “ECMA-404 : JSON Data Interchange Format”, European Association for
Standardizing Information and Communication Systems, (2013)

Appendix: The framework and tools

The ADF and experiments support tools on this paper are available on the
website(https://maslab.aitech.ac.jp/rrs/rcs17/).


