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Abstract. In this paper, we address the stagnation of RoboCup com-
petitions in the fields of contextual perception, real-time adaptation
and flexible decision-making, mainly in regards to the Standard Plat-
form League (SPL). We argue that our Situation-Aware FEar Learning
(SAFEL) model has the necessary tools to leverage the SPL competi-
tion in these fields of research, by allowing robot players to learn the
behaviour profile of the opponent team at runtime. Later, players can
use this knowledge to predict when an undesirable outcome is imminent,
thus having the chance to act towards preventing it. We discuss specific
scenarios where SAFEL’s associative learning could help to increase the
positive outcomes of a team during a soccer match by means of contex-
tual adaptation.

Keywords: RoboCup, Cognitive Learning, Contextual Fear Condition-
ing, Brain Emotional Model, Affective Computing

1 Introduction

RoboCup is an important international scientific initiative with the goal to ad-
vance the state of the art of artificial intelligence for autonomous robots by
proposing an ambitious challenge. The official challenge of the RoboCup initia-
tive, established in 1997, states that “by the middle of the 21st century, a team
of fully autonomous humanoid robot soccer players shall win a soccer game,
complying with the official rules of FIFA, against the winner of the most recent
World Cup.” [4].

The relevance of the RoboCup competition is not on the challenge itself, but
on the intrinsic gains from the journey to accomplish such a goal. RoboCup’s
initiative poses a challenge of high complexity that requires a significant body
of research in the areas of artificial intelligence, sensor fusion, real-time planning
and navigation, cooperation in multiagent robotics, context recognition, image
processing, motor control, among others [7]. The RoboCup initiative has hosted
annual competitions for more than 20 years now, a period over which significant
advancements have been achieved towards autonomous robotics.
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Despite RoboCup’s many achievements in a number of research fields related
to autonomous robotics, the development of contextual perception and flexible
decision making has made modest progress. In this paper, we address RoboCup’s
stagnation in these areas, discussing the existing approaches and their limitations
(Section 2). We propose in Section 3, as a potential approach to tackle these
limitations, our artificial emotional model named SAFEL (Situation-Aware FEar
Learning) [13, 14, 17], which consists of a hybrid architecture based on the fear-
learning mechanisms of the brain. Finally, in Section 4, we suggest RoboCup
scenarios where SAFEL could be useful to improve flexible decision making at
both individual and multi-agent levels, followed by the conclusions in Section 5.

2 Intelligent Behaviour in RoboCup

Due to the inherent teamwork nature of soccer, most RoboCup-related works ad-
dressing intelligent behaviour and decision making tend to investigate techniques
to optimise collaborative behaviour and pre-coordination [6, 10, 19]. These ap-
proaches are commonly based on pre-determined coordination strategies, such
as predefined behaviour rules and pre-trained machine learning and/or evolu-
tionary algorithms, which provide the robot players with a basis to decide when
it is better to kick, dribble, pass, change roles, etc.

Although useful for training a team of robots to play collaboratively in most
common soccer situations, these approaches lead to limited coordination strate-
gies that are immutable and restricted to tactics stipulated prior to the actual
soccer match. As a consequence, the same strategy is delivered against all op-
ponent teams in the competition. However, different teams may use different
tactics, and a specific pre-trained approach may fail against a particular oppo-
nent while being successful against another opponent team.

For example, suppose that strikers of a particular team may be more aggres-
sive and negligent than normal, consequently causing more collisions and fouls,
while another team’s striker may be excessively cautious, which could slow it
down. Therefore, the goalkeeper may need to take risky actions against the for-
mer team in order to avoid collisions and goals, which may not be necessary
against the latter team.

If we consider the many aspects involved in a robot’s action (e.g., the kick
strength, the collision prevention strategy, the walking speed and the range and
timing of vision perception), the final behaviour of a robot can be completely
different from team to team, even when considering the same in-game situation
(e.g., striker shooting to goal). Taking advantage of the behavioural variations
among teams can be critical to winning a soccer match.

For this reason, a mechanism that allows the individuals of a team to learn
and adapt at runtime to the playing behaviour of each opponent team is essen-
tial. The need for such a mechanism is accentuated by the ultimate goal of the
RoboCup competition: a soccer match between a team of robots and a team of
humans.
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Usually, for a team of robots, the difference in behaviour is only meaningful
when comparing two distinct teams. In other words, two different teams may
have different approaches to how they implement their players under a particular
role (e.g., striker, defender, goalkeeper). But it is uncommon for a team in the
RoboCup competition to have two or more completely different implementations
of the same role.

On the other hand, the behavioural difference goes further than just group
level for a team of humans. This is because, not only different teams have different
tactics, but also different individuals in a team may behave completely different
under the same situation, even when assigned to the same role. Therefore, a team
of human players entails even more complex behavioural differences if compared
to a team of robots.

The need for real-time adaptation capabilities has been previously addressed
using case-based reasoning [1, 18]. In these works, case-based reasoning approaches
are used for post-coordination as a mean to optimise players’ positioning during
the match. These works represent a great contribution towards post-coordination,
flexible decision making and real-time adaptation.

Nevertheless, to the best of our knowledge, these works usually fall in one
of the following limitations: (1) temporal information is not considered in the
problem solving, (2) the approach is domain specific or (3) predictions’ applica-
bility is limited to the optimisation of players positioning. In addition, most of
these approaches have been tested and applied only to RoboCup leagues based
on simpler robots or on simulations. RoboCup leagues based on more complex
robots, such as the Standard Platform League (SPL), still lack more robust real-
time adaptation mechanisms. In the next section, we present a situation-aware
fear-learning computational model, which is a real-time adaptation mechanism
capable of overcoming the above-mentioned limitations.

3 SAFEL

SAFEL stands for Situation-Aware FEar Learning. It is a situation-aware com-
putational system capable of providing robots with fear-learning skills in order to
predict threatening situations to their own well-being or to their goals. SAFEL’s
model has been first proposed by us in [17], partially implemented and tested
in [13] and improved in [14]. In this section, we briefly introduce SAFEL’s bi-
ological inspiration and design. For a deeper understanding of SAFEL’s model
and further details on its implementation and performance analysis, we refer the
reader to our previous publications [13, 14, 17].

SAFEL is a hybrid computational architecture inspired by the LeDoux’s fear-
learning model of the human brain [9, 8]. According to LeDoux, fear learning
greatly relies on two brain regions known as the amygdala and the hippocampus,
as well as on a cognitive function known as the working memory.

Considerable evidence indicates the amygdala as an essential brain region for
fear learning and memory [9, 8]. It is responsible for processing the emotional
significance of sensed stimuli by creating associations between neutral and aver-
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sive stimuli. On the other hand, the hippocampus is believed to be the main
brain region involved in context processing [8]. In the hippocampus, sensory in-
formation is put together in order to form a unitary representation of the current
state of affairs. Unlike information processed in the amygdala, representations
formed in the hippocampus are not just visual, auditory or olfactory, but all of
these at once, and includes the way these sensations relate to each other both in
intensity and temporal order. Finally, the working memory creates associations
between the contextual memory formed in the hippocampus with the emotional
memory formed in the amygdala, giving emotional meaning to the contextual
information acquired in past experiences.

SAFEL’s architecture is based on the task division proposed by LeDoux.
Therefore, analogous to the LeDoux model, SAFEL is divided into three modules
that work in an integrated and parallel manner: the amygdala, the hippocampus
and the working memory modules. Fig. 1 depicts the SAFEL model, illustrating
how the three modules of the architecture are interconnected.

Environmental stimuli detected by the robot (by means of sensors’ input or
direct user input) must first be normalized and categorised into aversive and
neutral stimuli by the robot’s controller before being delivered to the amygdala
and hippocampal modules. The amygdala module is responsible for detecting
threats by analysing the current values of aversive stimuli and associating them
with simultaneously occurring neutral stimuli. This learning process is induced
by means of a procedure analogous to classical fear conditioning [11].

In classical fear conditioning, associative learning is induced by pairing a
neutral stimulus (i.e., a stimulus that initially elicits no specific response from
the individual) with an aversive stimulus (i.e., a stimulus that naturally elicits
fear or discomfort, such as pain and hunger). Eventually, the previously neutral
stimulus acquires emotional meaning and becomes able to elicit the state of fear
by itself, even in the absence of the aversive stimulus. When this happens, we
say that the neutral stimulus is now a conditioned stimulus, which elicits fear as
a conditioned emotional response.

In SAFEL’s model, the amygdala module is also responsible for providing
emotional feedback to the hippocampus module, which in parallel generates
complex contextual representations of the sensed environmental stimuli. In the
hippocampus, the amygdala emotional feedback and the generated contextual
information are associated.

Finally, pieces of contextual information and their emotional significance are
memorised in the working memory. Later, any previously experienced pattern
of contextual information will trigger the retrieval of that stored memory and
its emotional meaning. Consequently, if a particular situation preceded the oc-
currence of an aversive stimulus in a past experience, the working memory will
retrieve the same state of fear triggered by that situation in the past, warning the
individual that an undesirable situation is likely to happen in the near future.

SAFEL’s amygdala module is based on a modified artificial neural network
(ANN) proposed by us in [16], which allows robots to associate environmental
stimuli at runtime based on the Pavlovian classical conditioning procedure [11].
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Fig. 1. The SAFEL model. Solid-border boxes represent areas of the brain whereas
dotted-border boxes represent cognitive functions of the brain. The model receives
neutral and aversive stimuli as input from the robot controller and outputs the corre-
sponding emotional response back to the robot controller.

In the amygdala module, this modified ANN is used to associate neutral and
aversive stimuli at runtime. The ANN is pre-trained to generate a high output
value whenever any aversive input is also high, and a low output otherwise,
regardless of the value of neutral inputs. Associative learning takes place by ad-
justing the first-layer weights of the ANN according to the coincidence of input
values. In other words, the association takes place whenever a high neutral stim-
ulus input and a high aversive stimulus input co-occur. Eventually, the neutral
stimulus is turned into a conditioned stimulus, becoming able to trigger by itself
the same ANN output that the aversive stimulus would, even in its absence. The
output of the ANN is said to be the adrenaline signal, which is a real value in
the range [0,1] representing the current fear level of the system.

The hippocampus module is based on Dey’s [3] conceptualization of situation
awareness for expert systems. It is responsible for collecting, understanding and
managing the states of the robot over time. To accomplish that, we have modelled
and implemented the hippocampus module using SCENE [12, 15], which is a
powerful situation management platform that extends the JBoss Drools rule
engine and its CEP (Complex Event Processing) platform [2].

The hippocampus module receives two inputs: events, which are sets of en-
vironmental stimuli at a given point in time, and the adrenaline signal relayed
by the amygdala module. This module is responsible for assembling these events
into pieces of information known as situations, which depict the robot’s state of
affair during a particular period of time. Situations are stored in the hippocam-
pus module as matrices Sm×n, where m is the number of time steps encompassed
in a particular situation’s duration and n is the number of stimuli being sensed
by the robot.
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Situations are later categorised in regards to their emotional meaning ac-
cording to the subsequent emotional feedback from the amygdala. Situations are
categorized as aversive situations if preceding high adrenaline signals, and safe
situations otherwise. Ongoing situations are left uncategorised because their true
emotional meaning can only be determined sometime after their conclusion.

Finally, the working memory is the module of SAFEL where the association
between context and “fear” takes place. In the working memory, the temporal
patterns of situations are memorised and associated with their respective labels
(safe or aversive). Here, two processes take place. First, a feature extraction
is performed in order to generate compacted versions of situational informa-
tion containing only the most relevant characteristics of the situations’ temporal
patterns. This process transforms situation information Sm×n into S′1×3n, by
extracting temporal information about each stimuli such as their average value
over time, number of local maxima and skewness. These compacted situations
are then delivered to a binary classification tree for learning and prediction.

The tree associates the emotional meaning of a situation with its temporal
pattern. Then, whenever an emotionally uncategorised situation arrives, the tree
attempts to predict its emotional meaning by comparing the temporal properties
of this situation and of those previously learned. If the tree finds a match for that
situation pattern, then it returns the emotional category linked to that pattern,
which will be either safe or aversive. Ultimately, SAFEL’s final output is the
emotional category retrieved by the classification tree and indicates whether
something aversive is likely to happen in the near future.

4 RoboCup Use Cases

Robot soccer poses a great challenge to robotics. It is real-time and takes place in
a highly dynamic environment, perceived by means of the robots’ sensors, which
are in many cases susceptible to reading failures and noises. In such a challenging
environment, advanced techniques and algorithms for flexible decision making,
adaptation and fast reaction are essential. In this section, we discuss possible
scenarios in the RoboCup SPL competition where a mechanism such as SAFEL,
which provides flexible decision-making capabilities and real-time adaptation,
would be desirable, if not essential.

4.1 Individuals’ Adaptation

As mentioned in previous Sections, most research related to robot soccer focuses
on improving teamwork and cooperative behaviour. Teamwork is undoubtedly
crucial in soccer, but its effectiveness is limited to the level of skill of the team
members. Good cooperation strategy is of little aid if the members of the team
are unqualified. In addition, despite the intrinsic team-work nature of soccer,
there are many situations in which individual players find themselves isolated
from the rest of their team. In these cases, they have no choice but to rely
on their own skills and decision-making capabilities. For this reason, we argue
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Fig. 2. Scenario example. Red squares represent players from team A, blue circles
represent players from team B and the black circle represents the ball. The circle and
square with thicker border line represent the respective team’s goalkeeper.

that mechanisms to improve the adaptation skills and flexible decision-making of
individual players are also essential for robot soccer. This is, however, a neglected
area of study in RoboCup.

We propose the scenario exemplified in Fig. 2: suppose a match between
team A and team B, where team A is currently attacking. Now suppose that a
defender from team B manages to take possession of the ball and switch fields
(i.e., pass the ball from one side of the field to the other in one shot). Because
team A was fully engaged in the attack, all members of team A are in team B’s
side of the field, except the goalkeeper. Finally, also consider that, second by the
goalkeeper from team A, the striker from team B is the closest player to the ball
at this moment. The ball stops closer to the goalkeeper, but far enough so that
the goalkeeper would have to leave the goal area vulnerable in order to reach it.

This hypothetical scenario is a clear example of a situation in which the
goalkeeper is isolated from the rest of its team and is forced to rely only on its own
judgement and skills. The striker from team B will certainly reach the ball before
the other players of team A unless the goalkeeper intervenes in some way. The
decision to be taken by the goalkeeper is, therefore, whether to intervene or not.
Intervening would imply in leaving the goal area unattended and, consequently,
vulnerable. On the other hand, not intervening would give an obvious advantage
to the opponent striker for a clear shot to goal.

The answer to this question is not straightforward because it depends on the
profile of the opponent team. If the opponent striker has weak shot, for instance,
then it is likely to need more than one kick to attempt a goal, giving team A
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time to retreat and aid in the defence. Also, if the striker’s first kick is not strong
enough, then the ball will consequently be closer to the goalkeeper so that it does
not need to leave the goal area unattended in order to reach the ball. Thus, in
this case, staying in place, protecting the goal and waiting for help to arrive is
more advantageous to the goalkeeper.

On the other hand, if the striker has a strong shot and a good aim, it may
be worth to risk leaving the goal area and trying to reach the ball first, since
staying in the goal area would likely result in a scoring opportunity for team B.
At first, it may seem a trivial problem that depends only on whether the striker
has strong kick or not. However, there are many factors involved, including the
distances and angles between the elements of interest in this situation (i.e., the
striker, the goalkeeper, the goal and the ball).

The kick that is weak from a particular position in the field, may be enough
to score a goal from another position if we consider the angle and distance
between the ball, the goal and the goalkeeper. The complexity of the problem
can be further increased by the number of undesirable outcomes that we intend
to avoid. For instance, in the above example, we defined that goals are the only
outcome to be avoided. However, if we add collisions as another undesirable
outcome, the behaviour profile of opponent teams will diverge even more, and
the sequence of events leading to the undesired outcomes (goals and collisions)
will become even more complex.

It is also worth mentioning that the sequence of events and their outcomes
can only be analysed and associated after they occur at least once. Because it
is not part of the pre-existing set of knowledge of team A, a learning process
must take place at runtime. This means that the situation of interest must be
experienced by the individuals first in order for them to acquire new knowledge
about the world. Only then an association between environmental stimuli can
be induced, leading to the necessary adaptations in behaviour.

We are currently working on a case study based on the scenario discussed
above. In this case study, the goalkeeper is placed under the same isolated situ-
ation above described and tested against four different team behaviours, where
both goals and collisions are considered to be undesirable outcomes. By using
SAFEL’s mechanism of fear learning, we expect the goalkeeper to learn when it
is advantageous to leave the goal area vulnerable and go for the ball, considering
the sequence of events and their outcome for each particular team behaviour and
the positioning of the elements of interest in the field.

4.2 Cooperation and Team Work

In real-life soccer, human players commonly use both pre- and post- coordination
strategies in conjunction. Soccer tactics usually involve the training of an agreed
formation and strategy prior to the match, which is the pre-coordination phase.
Nevertheless, unforeseen events may occur during the match, forcing teammates
to communicate and adapt the team’s strategy, which can be seen as a post-
coordination phase. While pre-trained coordination is well developed and studied
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in the RoboCup competition (as discussed in Section 2), the development of
post-coordination strategies is still overlooked.

Although SAFEL’s adaptive learning is intended mainly for robots as individ-
uals, we claim that it can be successfully applied to multi-robot tasks by improv-
ing collaborative behaviour and post-coordination. Among the varied methods
with which post-coordination can be accomplished using SAFEL, we highlight
two approaches, which are discussed below.

Anticipated Help Request In many soccer situations, an undesirable out-
come may be unavoidable, regardless of a player success in correctly predicting
it and taking the appropriate actions. For instance, consider the example given
in Section 4.1. The best way to avoid a goal when dealing with a particular
opponent behaviour may be to leave the goal area and try to reach the ball first.
However, this may also increase the chances of collision, since both striker and
goalkeeper will attempt to reach the ball at the same time.

It may seem a dead-end situation, but using SAFEL’s predictions to send an
anticipated help request to the rest of the team is a valid and advantageous action
in this case. By requesting help before it is actually needed, the goalkeeper allows
its teammates to act with antecedence and, perhaps, aid in situations where help
would be impracticable without the opportunity to anticipate their actions.

The goalkeeper, knowing that a particular sequence of events recurrently
leads to an undesirable outcome, could message its teammates and warn them
of its current situation. The teammates, in turn, could use SAFEL for learning to
predict the goalkeeper’s warning messages, by associating these messages with
the sequence of events that recurrently precede them. Ideally, the teammates
would become capable of predicting when the goalkeeper will be in trouble be-
fore the goalkeeper itself and have more options towards preventing undesirable
outcomes. This cascade of predictions would not only improve the team’s collab-
orative behaviour, but also potentially enhance the understanding among team-
mates to the point where they may be aware of each other’s situation before any
message is exchanged.

In the above discussion, we have instantiated the example of the goalkeeper,
but the same approach could be used to any other playing role in a variety
of situations. This is because SAFEL’s approach for fear-learning is domain
independent, thus applicable to any scenario where predictions based on tempo-
ral information are necessary for environmental adaptation, in and outside the
RoboCup domain.

The Coordinator-Robot Approach Similarly to SAFEL’s proposal, the
work of Ros et al. [18] is based on a fully distributed design, where each robot has
an independent reasoning and perception of the world. Communication between
teammate robots is allowed, but there is no global perception or control.

In order to solve coordination and collaborative behaviour using their de-
centralised model, Ros et al. propose an approach in which one single robot is
selected as the “coordinator”. The coordinator is responsible for reasoning over
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the current problem, given the state of the world, and messaging to the remain-
ing teammates the sequence of actions that should be executed by the group in
order to solve that problem.

This approach provides a simple solution to the post-coordination problem
while preventing decision-making conflicts that could arise from a distributed
system. Ros et al. also argue that this approach is useful for heterogeneous
teams, where the role of coordinator could be assigned to the group of robots
with higher computing power, while the remaining robots would only execute
the actions calculated by the coordinators.

Like the work of Ros et al., SAFEL’s adaptive fear learning is also based
on decentralised perception and reasoning. For this reason, we argue that the
approach of Ros et al. for coordination and collaboration could also be used with
SAFEL. The inputs for SAFEL could be, for instance, the global state of the
world (e.g., ball position, teammates positions, opponents positions, collisions,
goals, etc.), estimated from the local state of affairs perceived by each teammate.
Then, SAFEL’s emotional response would indicate whether there is an imminent
threat that the team should prioritise.

For instance, suppose that team A has used a machine learning algorithm
to pre-train cooperative behaviour for defence purposes, which is based on the
attacking behaviour of the other teams in the previous years of the RoboCup
competition. Let’s also suppose that team B has created a novel attack strategy,
which is considerably distinct from those used by the other teams. Naturally,
the pre-trained defence strategy of team A would be ineffective against team B.

In this scenario, SAFEL could be used with one or more coordinator robots. If
there is a pattern in the attacking formation of team B that recurrently precedes
goals from team B, then SAFEL would associate both and warn the coordinator
robot whenever that formation pattern occurs again. This would give the coor-
dinator the chance to act before another goal is scored, by adapting the defence
strategy of the team. For example, instead of using the default pre-trained se-
quence of actions, the coordinator could change it to a more risky or aggressive
defence, such as sending all teammates to defend the goal area, which should
be used only in extreme situations. In this example, the adaptation capabilities
provided by SAFEL go further than individuals’ level, by adapting the behaviour
of the team as a whole.

4.3 Drop-in Competition

The drop-in competition, introduced in 2013 [5], encourages the creation of
agents capable of coordinating and co-operating with other teammates in an
ad-hoc manner. In this competition, robots of different RoboCup teams collab-
orate as a single team towards a common goal: win the match with the highest
goal difference possible.

The biggest challenge of the drop-in competition reside in the the lack of
pre-coordination, which affects the players’ capability to properly communicate.
Because of the limited and possibly misleading communication, many RoboCup
teams do not completely trust their teammates’ messages during the drop-in
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competition. Doing so could mislead their robots towards engaging in a dis-
advantageous or non-intelligent behaviour, which would negatively affect their
score in the competition. According to Genter et al. [5], some RoboCup teams
have developed strategies to determine the reliability of their teammates’ mes-
sages and skills. Others, in turn, have solved the issue by simply not accepting
any incoming messages, or even by not communicating at all with teammates.
This has led RoboCup teams to converge to a single strategy in the drop-in
competition that Genter et al. describe as “Play the ball if it is close and/or no
other robot wants to play the ball. Take a supporting position otherwise.”

This simplistic strategy clearly diverges from the main goal of the drop-in
competition. Genter et al. argue that strategies for ad-hoc teamwork can be
improved in many ways, among which they mention the creation of mechanisms
to: (1) evaluate the reliability of each teammate’s communication; (2) evaluate
the relative skill of each teammate in particular roles and positions; and (3)
identify when it is better to make or receive a pass. We argue that the fear-
learning mechanism of SAFEL fulfils the exact needs indicated by Genter et al.,
since all the three above-listed real-time evaluations can be performed in terms
of associations between sequences of events and their undesirable outcomes.

5 Conclusion

In this paper, we have discussed the current gaps in the areas of contextual per-
ception, real-time adaptation and flexible decision-making within the RoboCup
competitions, mainly in respect to the Standard Platform League (SPL). Later,
we proposed SAFEL as a potential approach for tackling these gaps. SAFEL is
an emotional model for artificial fear-learning, which is inspired by well-known
neuroscience findings on the brain’s mechanisms of fear learning. Ultimately,
we discussed scenarios within the RoboCup SPL where real-time adaptation is
essential at both individual and multi-agent levels and suggested approaches
for addressing these situations using SAFEL’s associative learning. Future work
involves using SAFEL to implement the scenario discussed in Section 4.1.
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