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Abstract. We propose a simple but robust method to recognize an un-
known person described in natural language. In this case, a robot is
given a verbal description about a person whom the robot is required to
recognize. This task is challenging since humans and robots have signifi-
cantly mismatched perceptual capabilities (e.g., recognizing the color of
a coat). Without assuming that all linguistic descriptions and perceptu-
al data are correct, we use a probabilistic model to ground the target
person. In particular, the acceptability of color descriptions is modeled
based on visual similarity and the confusion matrix of the color classi-
fier which make the system more robust to illumination. Two groups of
experiments were conducted. Our experimental results demonstrate that
our system is robust to both perception and description errors.

1 Introduction

Human-robot collaboration is still a challenging task, especially for service robot-
s. In RoboCup@Home competition, there are many tasks related to humans, e.g.,
giving a drink to a person, following a man, guiding a woman, etc. In many cases,
it is highly likely that the target person in the instructions is described ambigu-
ously. Usually in the completion, a robot is required to find an unknown person
through recognizing some special motions of the person, such as waving hand.
A very common situation is that there are several people who may be the target
person, e.g., when customs coming to a restaurant or guests visiting your house.
Face recognition cannot be used in this scene because it needs to remember the
person’s face in advance. Robots need some simple but effective and intuitional
features to identify the person.

Natural language is a flexible modality for human-robot interaction [3, 13]. It
is a natural way to identify a person by giving some visual feature descriptions
through natural language. A referring expression is a linguistic product used to
discriminate a specific object from the rest of the world. The robot needs to
identify referents in the environment that are specified by its human partner.
The ability to ground referring expressions is important for conversational agents
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aimed at real-world interaction. With the ability of grounding referring expres-
sions to objects in the environment, robots can accomplish more complex tasks
through human-robot collaboration. Kunze et al. [10] proposed an approach for
searching for objects on the basis of Qualitative Spatial Relations (QSRs). Huo
et al. [9] use natural spatial language to control a robot performing a fetch task
in an indoor environment. Similarly, this paper aims to help the robot to rec-
ognize an unknown person via referring grounding. Two kinds of cues are used.
They are QSRs and color.

Imagine such a scenario. Bill invited some friends come to his house. Lucy
is one of the guests. Bill is busy in preparing for dinner and he may tell the
robot: “bring ice tea to Lucy from the fridge. She sits beside the cupboard in the
drawing-room and wears a red coat”. The example sentences above contain two
kinds of features about Lucy, color and spatial relations. Grounding the meaning
of the descriptive words in natural language by mapping them to its perception
will enable the robot to identify the specific physical person referred to. Actually,
the robot may encounter some uncertainties. First, humans and robots have
mismatched capabilities of perceiving the shared environment [12]. That is to
say, the perceived results of the robot may be different from that of the human
being. The robot is required to to give an assessment of the acceptability of the
information given by people based on its perception. There are two situations
that may occur when evaluating the acceptability of a speaker’s description
about color. At first, there is ambiguity in naming colors even for people. One
thinks a coat is orange, others may think it is yellow. Secondly, due to many
scene accidental events such as unknown illuminant, presence of shadows and
camera configuration, such as exposure, white balance, etc. people and color
classifier often give different predications as to an object. For example, when
illuminant becomes dark, the color classifier tends to judge the blue object as
grey. However, blue and gray are not as visually similar as orange and yellow.
Secondly, different from still objects, humans are likely to move which result in
the previous spatial relation description becoming wrong. Furthermore, due to
the limitations of perceptual algorithms, sensing results are not totally reliable.
In the cases, the robot must select correct descriptions based on some strategy.

To tackle those problems above, we propose a set of computational mecha-
nisms that correspond to the most commonly used descriptive strategies to eval-
uate the compatibilities between the referring expressions and numeric attribute
values from robot’s perception. The acceptability of color expression is evaluated
both from visual similarity and the confusion matrix of the color classifier. Based
on these mechanisms, we use a probabilistic model to determine the criteria for
selecting the correct combination from all the descriptions to uniquely identify
the referent. We tested the system under various conditions. Experiments show
that even in the case that color classification is incorrect or the target person is
mis-detected, our system can give the correct or approximate correct grounding
results. Two groups of experiments are designed under different illumination-
s. The results indicate that the system is robust both to the perception errors
and description errors. Note that our algorithm can be incorporated with other
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methods for more complex robot decision-making and planning [1, 21]. In the
following sections, we first give a brief discussion of the related work and then
give an overview of our system and describe our probabilistic model and word
grounding module. Then we designed two groups of experiments that correspond
to several typical situations that may occur in reality to evaluate the robustness
of our method. Finally, we conclude with our contribution and future work.

2 Related Work

There are two main problems during situated dialog. The speaker will encounter
the problem of Referring Expression Generation (REG) when he intends to
describe one object. Given Referring Expressions (REs), the listener needs to
ground these REs to figure out the referent. The problem in this paper belongs
to the latter. Computational approaches for referring grounding often consist of
two key components [7].

The first component which can be called word grounding models [11] address-
es formalisms that connect linguistic terms to the numerical features captured
in the robot’s representation of the perceived environment. In this paper, word
grounding modules give assessment of the acceptability of QSRs and color ex-
pression. There are many lectures that focus on searching task using QSRs by
relating an unknown object to a known object which can be called landmark [9,
10]. The landmark in [12, 11] also can be unknown objects. This makes the prob-
lem more complex. The robot need to grounding multi referents. However, for a
service robot, it has already constructed a 2D map of the house in advance. The
position of the stationary furniture (i.e., bookshelf, cupboards) which does not
tend to move in everyday usage is known for the robot. It is easy and effective
to select these furniture as landmark.

Different from QSRs, it is more complicated to describe color for machines
due to scene accidental events. Therefore it is hard to evaluate the acceptabil-
ity of color description.In [17], a perceptually based color-naming metric was
designed to measure the compatibility between a color name and an arbitrary
numeric color values in different color spaces (RGB and HSV). Based on this
metric, [15] proposed to evaluate the acceptability of color description based on
the deviation from its prototype in HSL space. This method can handle the visu-
al similarity between similar colors such as yellow and orange. But it ignores the
effects of scene accidental events such as illuminant. Although none of the color
classifiers can solve the illuminant problem, the trend of error can be predicted.
We can test the classifier on a large data set and obtain its confusion matrix.
If 20% ground truth with a blue label are mistaken for gray, when the speaker
described a coat as blue but the classifier predicted it as grey, the acceptability of
blue should be enlarged even though blue and gray is not similar in color space.
So we evaluate the acceptability of color expression based on the similarity in
color space and the confusion matrix of the color classifier.

The second component extracts all the linguistic terms from referring ex-
pressions and combines their grounding models together to identify referents.
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Gorniak and Roy [7] address the interpretation of combinatory spatial REs with
incremental filters, filter out a set of potential referents of each property using
perceptual data. This is computationally efficient. However, these methods are
based on the assumption that all these referring expressions and perceptual data
are correct. When grounding a person, the assumption is not established due to
the uncertainties discussed previously. Mast et al. [16] propose a probabilistic
framework base on the discriminatory power (DP) to measure how likely expres-
sions as a whole are to distinguish the target object from the distracter object
for REG. In this paper, we choose this as a criterion to select correct expressions
from all the descriptions then ground the target person. At the same time, the
grounding results can be adjusted with the feedback of the human partner.

3 A Probabilistic Framework for Referring Grounding

3.1 System Overview

The setup of our experimental system is shown in Fig. 1(b). It is a simplified
map of the dining-room in our lab. The robot is represented by a black dot.
People in the room are represented by squares with respective colors. The robot
is ordered to find Lucy whom it has never seen. It can ask people in the scene
about the characteristics of Lucy until it confirms who is Lucy. The overall ar-
chitecture is shown in Fig. 1(a). Through human-robot dialog, two kinds of cues,
spatial relations and colors are supplied to a robot. As all the spatial relation
(e.g., nearby, far from), landmarks (e.g. dining-table, TV) and color (e.g., red,
grey) are known both for the robot and the speaker, we can find relationship
prepositions and corresponding accusatives and color nouns in sentences by key-
word matching. The robot perceives the surrounding environment and obtains
the coordinates of people and their clothes colors. All the information is for-
warded to word grounding module which evaluates the compatibilities between
the word expressions from the dialog and the numeric attribute values or labels
from perception. The probabilistic model will select the expressions that best
match the robot’s perception and figure out the referent.

3.2 Perception

Microsoft Kinect is used to obtain aligned RGB-D images. 2D laser scanners
is used for localization and navigation. First a 2D occupancy grid map[5] [8] is
generated from the laser scanning results and odometry data. We annotate the
different structures such as rooms, doors, furniture and other interested objects
according to their semantic information in the the grid map. The map construct-
ed the world coordinate system of the home environment. The depth image is
transformed into the world coordinate frame via tf [6]. We use HAAR [20] face
detector to detect human face area in the RGB image. The corresponding area
in the depth image is segmented to obtain human’s location in world coordinate.
It can be inferred that the area below the face area with the distance of equal
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Fig. 1. (a) The overall architecture. (b) An example scene.

height of the face corresponds to the human clothes. In order to reduce the in-
fluence of illumination, we use grey world [2] to correct color cast to a certain
degree. A fuzzy color model which is learned from uncalibrated data obtained
from “Google Image” in [19] is used as the color classifier.

3.3 Probabilistic Model

Suppose during the conversation, the speaker (No.4 in Fig 1(b)) uses three sen-
tences to describe Lucy to the robot. “Lucy stands beside the dining-table in
a blue coat.”,“She is far from the cupboard.”,“She is beside the bookshelf.” It
is obvious that the first sentence and the last sentence are contradictory. The
robot has to find one strategy to figure out which one is credible. The character-
istics described in the first two sentences clearly distinguish No.3 from others.
The characteristic described in the last sentence is unable to distinguish between
No.2 and No.5. As a listener, the robot is more convinced that the No. 3 who
is beside the dining-table in a blue coat is Lucy rather than the ones beside the
bookshelf, as the discriminatory power (DP) of this description combination is
greater. DP can be modeled by a probabilistic model P (x|D) which means given
a description D and a person x, the probability that the listener identifies the
goal person x correctly. P (x|D) can be formulated in the Bayesian framework:

P (x|D) =
P (D|x)P (x)

P (D)
(1)

where P (D|x) is the probability that given the target person x, such a description
D would be accepted by humans. The description related to the referent are
sets of feature descriptors fi(color or QSR). D := {f1, f2, . . . , fn}. For each
person and feature the word grounding module gives a number within [0, 1] that
measures the respective feature appropriateness. Obviously, the probability of
accepting that “Lucy wears a red coat” is independent of the probability of
accepting “She is beside the dining-table”. Therefore, it is reasonable to assume
that the acceptability of different features is stochastically independent.

P (D|x) = P (f1|x) · P (f2|x) · . . . · P (fn|x) (2)
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P (D) gives the probability that the description D suits an arbitrarily chosen
person in the scene. Suppose there are M individuals in the scene. P (Xi) is
the probability of randomly choosing the person Xi in the scene. For simplicity,
P (Xi) = 1/M . If multiple people in the scene suit the description D, the prob-
ability of correctly identifying the referent will reduce. Therefore, the following
formula can be obtained.

P (D) = 1/M

M∑
i=1

P (D|Xi) (3)

If the target person x exists, that is x ∈ X (he has been detected by the robot),
DP of the combination of the descriptions associated with him is certainly max-
imal. Based on these, the strategy for the robot to identify the credible descrip-
tions can be obtained.

(D∗, x∗) = arg maxP (Xi|D) (4)

D∗ and x∗ stand for the correct description combination for the referent and the
person most likely to be the referent respectively. However, it is impossible to
ensure that the robot can detect all the people in the scene. If No.3 in Fig. 1(b)
has not been detected by the robot, the optimal solution will be meaningless.
Under this circumstance, the acceptability of the correct description will be very
low. Worse still, in the presence of incorrect descriptions, it is difficult for the
robot to be aware of its mis-detection. Suppose the robot infers that No.6 is Lucy.
After the robot says out its grounding result, according to conversation habits in
general, the speaker will describe Lucy again to distinguish Lucy from No.6. The
correct descriptions will be repeated. It is sure that the repeated descriptions are
credible. If the acceptability of this description is too low (below a threshold),
the robot will realize that its grounding result is wrong and it hasn’t detected
Lucy. Then the robot will perceive the surrounding environment again. What’s
more, another hint can be obtained from the speaker’s feedback, there is no need
to perceive the whole environment again. The position where Lucy most likely
stands can be inferred from the QSRs. We sample the unoccupied pose Pu in
the map and consider the pose p∗ which satisfies formula 5 as the position where
the referent most likely stands. QSRs∗ is the combination of spatial relation
expressions which is most consistent with speaker’s feedback.

(QSRs∗, p∗) = arg maxP (Pu|QSRs) (5)

3.4 Word Grounding Module

Functionally, word grounding module evaluates the compatibilities between the
word expressions from the dialog and the numeric attribute value from sensors.
Theoretically, this is the problem of designing membership functions for fuzzy
concepts. There are several membership function generation techniques, such as
methods based on subjective perception, heuristic methods, methods based on
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Fig. 2. (a) The distance between the target person and the furniture. The furniture
is represented by a rectangle.(b) The relative angle of the target with respect to the
landmark and the the partition of the four directional relations.

clustering, etc.[4] As for QSRs, we use the heuristic method which is designed
based on rules to generate the membership functions for different spatial relations
expressions. As for the color expressions, a method similar to clustering is used
to design membership functions. Assume the face detector gives the coordinates
of a person is (X,Y, Z) and color classifier predicts his clothes as CM . The re-
lationship prepositions and corresponding landmarks and color nouns extracted
from the sentences is fi, li and CH . The position of the furniture (Xf , Yf ) can be
obtained from the the grid map. The minimum applicability for all descriptions
in this paper is set to 0.5.

Qualitative Spatial Relation QSRs consist of distance relations {nearby,
beside, between, far from} and directional relations {left of, right of, front of,
behind}. As to the directional relations, the landmark only can be the robot
or the speaker. The distance d between the goal person and the furniture is
shown in Fig. 2(a). d =

√
(X −X0)2 + (Y − Y0)2. The membership functions

for the three binary relation( beside, nearby, far from) of the distance relations
are designed in triangular shapes (Fig. 3(a)). When the distance d is close, the
membership grade of beside is the highest; when d is far, the membership grade
of far-from is the highest; otherwise, when d is moderate, the membership grade
of nearby is the highest. The ternary relation (between) can be represented as
the combination of two binary relations.

The four directional relations are showed in Fig. 2(b). Robot and speaker
define the reference axis (view direction) which partitions the surrounding space.
Then, the spatial relation is defined by the partition in which people lie with
respect to the reference axis. Given the view direction V = (x, y), to determine
the partition, we calculate the relative angle ϕrel:

ϕrel = tan−1 Y − YL
X −XL

− tan−1 y

x
(6)



8 Wang et al.

0 1 2 3 4 5

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
ce

pt
ab

ili
ty

beside nearby farfrom

(a)

0 1 2 3 4 5 6 7

φ
rel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ac
ce

pt
ab

ili
ty

 

front left behind right

(b)

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

black blue brown grey green orange pink purple red white yellow

acceptability of blue confusion S
hsv

(c)

Fig. 3. (a) The applicability of each distance relation along d. (b) The applicability
of each directional relation within the interval [0, 2π]. (c) The acceptability of blue for
different colors predicted by the classifier.

The membership functions for the four directional relations are designed as cosine
curve shapes. For example, the membership function for FrontOf is:

P (fi = FrontOf|x) = max(cos(ϕrel − cnti), 0) (7)

cnti for directional relations FrontOf, LeftOf, Behind, RightOf, is 0, 0.5π, π,
and 1.5π respectively. From Fig. 2(b), it is intuitive that the greater the de-
viation from cnti, the smaller the possibility to accept the description fi. The
applicability of each directional relation within [0, 2π] is show in Fig. 3(b).

Color Most computer vision works consider the eleven basic color terms of
the English language: black, blue, brown, grey, green, orange, pink, purple, red,
white, and yellow [18]. The visual similarity between CH and CM can be evalu-
ated as the distance of their prototypes in HSV space. Color classifier can not be
perfectly fit with human visual perception. The color classifier is likely to confuse
some color pairs when under different illuminants. This results in its prediction
differing from human’s judgment. This also can be another evidence for their
similarity. Therefore, the acceptability between CH and CM can be evaluated
by the linear sum of their similarity in HSV S(CH , CM ) and the probability of
confusing CH with CM confusion(CH , CM ) which is shown in formula 8.

P (CH |CM ) = α · S(CH , CM ) + β · confusion(CH , CM ) (8)

Where α and β is normalized coefficients. We test the color classifier on the eBay
data set [19] and get its confusion matrix. Reference to the method of clustering
in HSV space in [14, p. 2], we get the similarity matrix. The acceptability of
blue for different colors predicted by the classifier is shown in Fig. 3(c). The red
line is the possibility of confusing blue with different colors. The classifier is most
likely to confuse blue with grey and purple. The green line shows the similarity
in HSV. Even though the similarity between blue and grey is lower than 0.5, due
to the high possibility of confusing blue with grey, the acceptability of blue is
improved above the minimum acceptability. This improves the tolerance of our
system to classifier errors and make it more robust to scene accidental events.
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(a) (b)

(c) (d)

Fig. 4. (a) The setup of our experiments. (b) The world model of the robot. The
detection results of people are shown in cylinders. The color of the one who it thinks
to be the target person will turn red. Otherwise, it keeps blue. The detection results
under bright and dim illumination are shown in (c) and (d) respectively.

4 Experiments

During human-robot interaction, there are two factors that have influence on the
grounding result. They are the perceptual results of computer vision algorithms
and the descriptions given by its partner. Therefore, we verify the robustness of
the system by the following two schemes. One is to change the illumination of the
environment to affect the perception result. The other is to change the speaker
or target person to change the descriptions. Therefore, we designed two groups
of experiments under different light conditions. Under each light condition, for
each of the speakers who have been detected by the robot, the robot is required
to ground different target persons.

The setup of our experimental system is shown in Fig 4(a). There are 7 people
in the room. They are marked A∼G. In the first group, all fluorescent lamps in
the room are open. In the other, one lamp is turned off. The robot perceived
the whole room. The detection results under bright and dim illuminations are
shown in Fig. 4(c) and Fig .4(d). The robot uses natural language to describe
its grounding results and display it in rviz to ensure its partner can understand
it. We did 66 (6 · 6 + 5 · 6) experiments in total. Three examples are shown in
Table 1-3. At the left of the tables is the detection results by the robot. People
detected by the robot are represented by squares. In the first example (under
bright illuminations), the robot is required to ground Peter( F in Fig 5(a)) who
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Table 1. Ground Peter

Speaker: D Dialog
Ground Peter( F in Fig 4(a))

0 1 2 3 4 5 6 7 8 9
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

5

6

cupboard

dining_table

bookshelf

4

1
2 3

R: Can you tell which one is Peter?
S: He wears a pink coat.
(The robot misidentified blue as pink)
R: I think the one is Peter. (x3) He is nearby the
cupboard and nearby the dining-table,
his clothes is red.
(DP = 0.2755, based on P (pink|x3) = 0.6567)
S: No, he sits beside the bookshelf.
R: I think this one is Peter. (x4) He is beside the
bookshelf. His clothes is blue.
(DP = 0.9989, P (beside|x4) = 0.917 > 0.5)
S: Yes

Table 2. Ground David who hasn’t been detected

Speaker: D Dialog
Ground David( E in Fig 4(a))

0 1 2 3 4 5 6 7 8 9
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

5

6

cupboard

dining_table

bookshelf

4

1
2 3

R: Can you tell which one is David?
S: He sits beside the dining table in an orange coat.
R: I think the one is David. (x3) He is nearby the
cupboard and nearby the dining-table,
his clothes is red.
(DP = 0.483, based on P (orange|x3) = 0.599)
S: No, he sits behind me and his coat is orange.
R: I think I have missed him.
(DP = 0.444, P (orange|x6) = 0.293 < 0.5)
I think he is beside the dining table(p∗ = (3.95,−0.90))
S: Yes

has been detected and his color has been predicted correctly. But during the
conversation, the robot misidentified blue as pink. As red is most similar to
pink, the robot thinks x3 is Peter. After the speaker supplements more cues,
according to the principle of maximum DP, the robot thinks x4 is Peter. In the
second example (under bright illuminations), the robot is required to ground
David who hasn’t been detected by the robot is shown in Table 2. Even though
David has not been detected, according to QSRs, the robot calculates the most
probable position where David exists. Therefore, this is a successful grounding.
An example of unsuccessful grounding Jim who has been detected but whose
color is misidentified is shown in Table 3. The error rate of the overall system
is shown in Table 4. The description error is caused by speech misidentification
or man-made mistakes. The grounding error is lower than the perception error
and description error. It demonstrates that our grounding system is robust to
the perception errors and description errors.
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Table 3. Ground Jim whose color is misidentified

Speaker: G Dialog
Ground Jim( C in Fig 4(a))

0 1 2 3 4 5 6 7 8 9
-3.5
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-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

5

cupboard

dining_table

bookshelf

1
2

3

4

R: Can you tell which one is Jim?
S: Jim sits beside the cupboard in a red coat.
R: I think the one is David. (x2)He is between the
cupboard and the dining table, his clothes is blue.
(DP = 0.456, based on P (beside|x2) = 0.936)
S: No, his coat is red.
R: I think I have missed him.
(P (red|x3) = 0.294 < 0.5)
I think he is beside the cupboard(p∗ = (5.15,−2.4))
S: No

5 Conclusion

In this paper, we consider to help a robot recognize an unknown person through
the descriptions consisting of spatial relations and coat color. We use a proba-
bilistic model to model DP. The person described by the user can be grounded
based on the criterion of maximizing DP. We use a word grounding module to
evaluate the compatibility between the word expressions and the numeric at-
tribute values. The acceptability of color descriptions is modeled base on visual
similarity and the confusion matrix of the color classifier. This improves the tol-
erance of our system to classifier errors and make the system more robust to
scene accidental events. For the case that the target person isn’t detected by the
robot, we use QSRs to infer the most likely location of the target, which is con-
venient for the robot to search again. Two groups of experiments are designed
which indicates that our grounding system is robust to the perception errors and
description errors. This work has been demonstrated on the Open Challenge test
in RoboCup2016@Home. In our future work, in addition to QSR and color, more
features can be added to our system. Moreover, our long-term goal is to make
the robot more intelligent through the full use of the surrounding information.
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Table 4. The error rate of the overall system

Face Detection Error 21.4% (3/14)

Color Classification Error 27.3% (3/11)

Description Error 18.9% (56/297)

Grounding Error 12.1% (8/66)
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