
Situation-dependent Utility in Extended
Behavior Networks

Matthias Hofmann1 and Thorben Seeland1

Robotics Research Institute, TU Dortmund University, 44221 Dortmund, Germany

Abstract. In this paper, we present a modification of extended behavior
networks that enables an agent to learn the relationship between world
states and undertaken actions. To this end, we introduce a situation-
dependent utility value that is based on the observation of effects after
the execution of an action. The utility values serve as bases of multi-
dimensional interpolation functions, and supports the revised and ex-
tended action selection mechanism to take better actions over time. The
evaluation shows that our approach improves action selection. We assess
the performance of our system in the RoboCup domain using simulation.

1 Introduction and Related Work

Action selection is an important and well-addressed topic in autonomous robotics,
esp. in the RoboCup domain. The simulation leagues are a suitable playground to
investigate the performance of high-level behavior. Extended behavior networks
provide a powerful and flexible framework for organizing and managing behav-
iors [1],[2],[3]. Our approach addresses two outstanding weaknesses of extended
behavior networks: First, we provide a notion of learning to extended behavior
networks, and second, we add knowledge of truth values of propositions over
time to the network so that it is able to adapt itself to changing environmental
conditions.

There is plethora of other methods that have been used for action selection in
the robot soccer domain. For instance, a case-based approach has been applied
to robot soccer for coordinated action selection [4]. A vision-based approach
in combination with fuzzy reasoning has been investigated in [5]. Decision-tree
learning was employed in the simulation league [6].

The remainder of the paper is structured as follows: We outline the main
concepts of Extended Behavior Networks along with our changes in section 2. We
assess the performance and capabilities of the system in section 3. We conclude
the paper in section 4.

2 Extended Behavior Networks

This section briefly describes the main concepts of prior versions of extended
behavior networks. Therefore, subsections 2.1 and 2.2 are based on the work of
Dorer [1]. Subsection 2.3 covers our changes to the existing system, introducing
the concept of a situation-dependent utility value for effects of actions.

2

2.1 Notations and Conventions

For further reading of the paper, we define the following sets, relations, and
operations.

1. S is the set of world states, s ∈ S.
2. P+ is a set of atoms.
3. P is the set of atoms, and negated atoms P+.
4. L∧ is a language over P with logical ∧.
5. L is a language over P with logical operations ∧ and ∨.
6. Let τ : P+×S → [0 . . . 1] the fuzzy value of an atom in relation to the world

state, with τ(¬p, s) = 1− τ(p, s), τ(p ∧ q, s) = τ(p, s)⊗ τ(q, s), τ(p ∨ q, s) =
τ(p, s)⊕ τ(q, s). ⊗ is a continuous t-Norm, and ⊕ a continuous t-Conorm [7,
8]. Furthermore, p, q ∈ P+.

7. Let def : L → Pot(P+), and for l ∈ L, def (l) the set of all in l used atoms.

2.2 Extended Behavior Networks

Extended Behavior Networks consists of three basic components: Literals, (com-
petence) modules, and goals. A literal is a proposition that receives a (fuzzy)
truth value by a function t with respect to the current world state s of the robot.
Extended behavior networks utilize literals to formulate conditions for goals and
modules, e.g. whether a specific goal has reached. A module contains precondi-
tions Pre, a specific behavior b, and postconditions Post. In the course of this
paper, b is also called an action. Post consists of effects Effj , and a probability
exj for the effect to become true. A goal comprises a target condition GCon.
Moreover, there are a static and a situation-dependent importance (ι, r) of the
goal, and a relevance condition (RCon). Additionally, there is a set of parameters
for extended behavior networks:

1. γ ∈ [0..1] controls the influence of activation of modules.
2. δ ∈ [0..1] controls the influence of inhibition of modules.
3. β ∈ [0..1] the inertia of activation across activation cycles.
4. θ ∈ [0..a] the activation threshold that a module has to exceed to be selected

for execution, with a as the upper bound for a module’s activation.
5. ∆θ ∈ [0..θ] the threshold decay.

The action selection mechanism distributes activation over the network. It
is called revised and extended action selection mechanism (REASM) based on
Maes [9], and consists of the following steps:

1. Calculate the executability e for each module.
2. Calculate the activation an for each module in the current execution cycle
n ∈ {0, 1, . . .}.

3. Combine activation and executability by a nondecreasing function h : R ×
[0, 1]→ R. The value h(an, e) is called execution value.

3

4. If the maximum value h(ank , ek) of a module k is greater than a threshold
value θ > 0, the behavior of module k is executed.

5. If the maximum value of h(ank , ek) is smaller than θ, θ is decreased by ∆θ,
and n incremented. The mechanism continues with the second step.

For activation spreading, the following rules apply:

1. A module k receives activation ankgi
′ from goal gi by the effect Effj , iff

Effj ∈ def (GCongi).
2. A module k receives negative activation ankgi

′′, iff ¬Effj ∈ def (GCongi).

3. A module k receives activation ankgi
′′′ from goal gi by a successor succ, iff

Effj ∈ def (Presucc).
4. A module k receives negative activation ankgi

′′′′ by the goal gi by a successor
conf , iff ¬Effj ∈ def (Preconf).

5. The activation of a module from goals is

ankgi = absmax
(
ankgi

′, ankgi
′′, ankgi

′′′, ankgi
′′′′) ,

6. and the overall activation of the module is

ank = βan−1k +
∑
i

ankgi .

2.3 Introducing Situation-Dependent Utility

Prior versions of extended behavior networks [1, 3] utilize fixed expectation
(probability) values exj for each effect Effj in module k. However, determining
exj is a difficult task, and is either done by optimization, or manually set by the
behavior designer. This requires domain knowledge and experience. Additionally,
exj is a generalization. Thus, modeling situation-dependency in prior versions
of extended behavior networks would require the definition of additional compe-
tence modules that model relations between preconditions that are not part of
the executability, and effects for each situation. Therefore, the number of com-
petence modules could greatly increase. Although the executability of a module
k depends on the world state, the effect of an action that is taken by the agent
may greatly rely on the game situation as well. The original version of extended
behavior networks does not take this relevant aspect into account.

From a technical perspective, we replace the current probability of an effect
to become true, exj by a situation-dependent rating value function ex∗j (s) that
express the utility of an action at time t with respect to the world state s. For-
mally, we define for each effect Eff∗j a function such that ex∗j (s) = τ∗(Eff∗j , s).
In contrast to τ(Effj , s), τ

∗(Eff∗j , s) estimates the expectation value for each
literal of the effects of each module with respect to τ(Effj , s) for all p in Pre.
This means that only the subset of the world state is deemed relevant for the
effect according to Pre, is used. Figure 1 summarizes the changes in the compe-
tence modules of the extended behavior networks.

4

Module k
Pre ∈ L∧ (Precondition)
e = τ(Pre, s) (Executability)
b (Behavior)
Post = (Eff, ex) (Postcondition)
Eff =

∧
j Effj ∈ L

∧, Effj ∈ P (Effect)
exj = P(Effj) (Static Expectation)
ank (Activation by Goals)
h(ank , e) (Utility)

Modul k∗

Pre ∈ L∧ (Precondition)
e = τ(Pre, s) (Executability)
b (Behavior)
Post = (Eff∗, τ∗) (Postcondition)
Eff∗ ⊆ P, Eff∗j ∈ def (Eff∗) (Effect)
ex∗j (s) = τ∗j (Eff∗j , s) (Situation-dependent Effect Eff∗j)
ank (Activation by Goals)
h(ank , e) (Utility)

Fig. 1. We compare module k in its prior version shown in [1] with the new module
k∗. Here, we replace exj with the function τ∗.

The definition of τ∗ depends on the one hand on the observation of the effect
itself, and on a relevance function r which takes the influence of the time t into
account. This way, we observe the effect of the action over a period and calculate
the value. Figure 2 exemplifies an observation function while Figure 3 shows an
example of a relevance function r. In this particular example, we assume that a
soccer agent passes the ball to a team member. We observe that the ball rolls
too far. Altogether, the utility value τ∗Pass(BallNearTeammate, s) is calculated
by using τB = τ(BallNearTeammate, s):

τ∗Pass(BallNearTeammate, s) =

∑
τB(t) · r(t)∑

r(t)
(1)

Since we know the preconditions that are relevant for the current action,
and the corresponding utility values, we need a mathematical method to keep
this knowledge for reuse and update. Hence, we choose interpolation functions
to save the relationship between preconditions (the game situation), actions,
and the corresponding utility. This way, we are able to improve the knowledge
of an agent over time by recording and rating the effects on each action in
many situations. Moreover, after a training phase, unseen game situations can

5

time t
0
t0

1

τB = τ(BallNearTeammate, s)

t0+ expected time of the passing procedure

Fig. 2. We calculate τ∗Pass(BallNearTeammate, s) by observing the effect of the action
over time.

time t
0
t0

1

relevance function r

t0+ expected time of the passing procedure

Fig. 3. We utilize the relevance function r for weighting the influence of t.

be assessed based on experience of previously seen game situations, and their
utilities of actions. Finally, we are able to revise the knowledge of an agent by
updating the system if something in the environment of the agent changes. To
this end, outdated bases1 can be removed from the agent’s knowledge, and bases
that are close to each other can be merged to a single base. The usage of the
aforementioned aspects depend on the application, and are part of the design
choices of the behavior engineer.

In this paper, we utilize radial basis functions based on Lowe [10]:

sRBF (x) =

m∑
j=1

λjφ(||x− yj ||), x ∈ Rn. (2)

1 Base means a supporting point of the function.

6

The radial basis functions determine the weights λi by combining conditions
of the interpolation with the interpolation function sRBF . We solve the following
equation for the application of radial basis functions: f1

...
fm

 =

 A11 · · · A1m

...
. . .

...
Am1 · · · Amm

 ·
 λ1

...
λm

 (3)

with
Aij = φ(||xi − yj ||). (4)

Radial basis functions offer different types of interpolation functions φ. The

most popular ones are the Gaussian (φ(r) = e
−0.5 r2

r20), multi-square (φ(r) =√
r2 + r20), and the thin-splate (φ(r) = r2 · log(rr0)) method by Dunchon [11].

We implemented the radial basis interpolar based on Burkardt [12]2. Equa-
tion 3 is solved by singular-value decomposition according to [13].

3 Evaluation

The evaluation exclusively addresses our changes to extended behavior networks.
For evaluation, it is required to repeat the shown experiments many times in or-
der to acquire knowledge about the utility of actions in the extended behavior
network. Moreover, robotics has to deal with many uncertainties that may in-
fluence the results of the experiments. Therefore, it is in our case beneficial to
use ground truth data in order to validate the concepts of our work. Due to
the aforementioned reasons, it is very difficult to evaluate the system on robotic
hardware. Therefore, we opted for an evaluation of the system with the Sim-
Robot simulator based on the 2016 version of the B-Human framework [14]3.

This section is structured as follows: First, we describe the different types
of extended behavior networks that are used in evaluation (see subsection 3.1).
Second, we illustrate the initialization process, and two experimental setups (see
subsection 3.2). Finally, the results are presented in 3.3.

3.1 Types and Instances of the Extended Behavior Network

In this section, we describe the instance of the extended behavior network that
we use for evaluation. First, we define the following literals:

– angleToBall : Describes the relative angle of the robot to the ball. The fuzzy
value is 0 when the agent is heading the opposite diretion of the ball,a nd
vice versa.

– ballValidity : Confidence of the ball position on the field.

2 Source code: https://people.sc.fsu.edu/~jburkardt/cpp_src/rbf_interp_nd/

rbf_interp_nd.html
3 https://www.b-human.de/downloads/publications/2016/coderelease2016.pdf

7

– distanceToBall : Distance of the robot to the ball. To define the fuzzy vari-
able, we use the Euclidian, and a maximum distance that results into 0.

– ballInsideGoal : Becomes true if a goal was scored.
– ballPosition: Models whether the ball is in favorable position on the field

and depends on relative positions to the own and opposite goal.
– ballPossession: Models whether a team is in ball possession.
– danger : Models whether an opponent blocks the ball.
– passFreeTo# Models whether the way to the team member is free for passing.
– goodPassDistanceTo#: Expresses whether the team member is in a good

position for receiving a pass depending on the distance to the passing agent.
– matePositionOf#: Expresses whether the team member is in a favorable

position on the field. This corresponds to the rating of the ball position on
the field.

– shotFree: Models whether the way to the goal is free for kicking.
– goodShotDistance: Models whether the distance to the opponent goal is suit-

able for kicking.

The goals of the extended behavior networks are outlined in Table 1 while
the modules are shown in Table 2. The parameters of the radial basis functions,
and extended behavior networks are listed in Table 3. We choose the settings
according to our initial experience with the system.

Goal 1

GCon: ¬danger ∧ ballPossession
RCon: ¬ballPossession
ι: 0.8

Goal 2

GCon: ¬danger ∧ ballPossession
RCon: ¬ballPosition ∨ danger ∨ ¬ballPossession
ι: 0.8

Goal 3

GCon: ballInsideGoal
RCon: trueV alue
ι: 1

Table 1. Goals of the extended behavior network.

While the structure of the extended behavior network is the same for all
experiments, we define three different types of extended behavior networks: The
first type is an instance of an extended behavior network without our modifi-
cations, i.e. with fixed exj . The second type is an extended behavior network
with situation-dependent utility values and offline training. The third type is an
extended behavior network with situation-dependent utilities, and online adapta-
tion. This is simply done by constantly adding and revising the knowledge that
has previously been acquired with the interpolation function.

8

shoot

Pre: shotFree ∧ angleToBall ∧ ballV alidity ∧ distanceToBall ∧ goodShotDistance
Post
Eff : ballInsideGoal ∧ ballPosition ∧ danger ∧ ¬distanceToBall
(exj): (0.8, 0.8, 0.5, 0.6)

dribble

Pre: angleToBall ∧ ballV alidity ∧ distanceToBall
Post
Eff : angleToBall ∧ ballV alidity ∧ distanceToBall ∧ ¬danger ∧ ballPosition
(exj): (0.6, 0.6, 0.6, 0.6, 0.7)

passTo#

Pre: passFreeTo# ∧ goodPassDistanceTo# ∧matePositionOf#
Post
Eff : ballPossession ∧ ¬danger ∧ ballPosition
(exj): (0.8, 0.5, 0.7)

Table 2. Modules of the extended behavior network.

radial basis function interpolation
maxSupportPoints 50
minDistance 0.05

Extended behavior network
h(a, e) a · e
γ 0.7
δ 0.6
β 0.0
θ 0.3
∆θ 0.1
Table 3. Strategy parameters of the extended behavior networks and the radial basis
interpolation method.

3.2 Experiments

Before we start with evaluation, it is required to initialize the extended behavior
networks with situation-dependent utilities. This is done as follows: We create
20 scenes, where 5 robots and the ball is being placed on predefined, but varying
positions per scene onto the simulated SPL4 field. The setup consists of one robot
which is using an extended behavior network, and taking actions. Moreover,
there are two team members, and two opponent players, which are fixed in their
positions not doing anything. The agent executes ten times each of the actions
on each scene. The observed utility and precondition values are recorded for later
validation in the experiments.

Experiment 1 validates the system with respect to the initial conditions.
To this end, we use scenes number 1 to 3 (see Figure 4). In a first step, we
determine the optimal action for each scene. This way, each possible action

4 Standard Platform League

9

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Fig. 4. Scenes used for evaluation. One team composes of the robots red 1 and red 5,
the other team consists of robots blue 3, blue 4, and blue 5.

(dribble, passTo3, passTo5 and shoot) is executed ten times on scenes 1 to 3.
We record the fuzzy values of each literal of the postconditions, and calculate a
and h. We use the average of these values for assessment. The best actions of
each scene serve as a reference for comparison for the various extended behavior
network types that have been previously trained. This way, we count how often
the extended behavior network is able to conduct the optimal action. By using
the aforementioned procedure, we find the best actions for scene 1 is passTo3,
for scene 2 passTo5, and for scene 3 shoot.

In experiment 2, we change the environment by significantly increasing the
ground friction in the simulation. As in the first experiment, we use scenes 1
and 2 again, but use scene 4 instead of scene 3 (see Figure 4). Due to the higher
friction, the ball is not able to reach the goal after kicking it. The further steps
are the same as in experiment 1. The best action for scene 1 is passTo3 and for
scene 2 and scene 4 passTo5.

The adaptive, situation-dependent version of the extended behavior network
is executed 30 times in each experiment in order to check convergence. The other
types of the extended behavior networks are executed ten times.

10

3.3 Results

The following Table 4 lists the performance of each interpolation method in
comparison to each type of extended behavior networks in both experimental
setups with different initial parameters. Each interpolation method is by default
initialized pessimistically (0.0), neutral (0.5), or optimistically (1.0) before the
knowledge about actions and their effects are being introduced.

It is cognizable that the type and initialization of the interpolation methods
play a key role in the performance of selecting the best action in the particu-
lar scenes. By trend, interpolation method works better if they are initialized
neutral or optimistically. Moreover, the interpolation methods should ideally re-
spect the interval [0..1]. Naturally, the performance of the approach depends on
the number of scenes that are being used for training the situation-dependent
extended behavior networks.

Experiment 1 Experiment 2
Scene 1 Scene 2 Scene 3 Scene 1 Scene 2 Scene 4

unchanged EBN (10 attempts per scene)

fixed 0 0 10 0 0 0

situation-dependent estimation with interpolation (10 attempts per scene)

Gaussian (0.0) 5 10 2 5 9 9
Gaussian (0.5) 0 6 10 0 9 3
Gaussian (1.0) 0 0 10 0 0 0
multiquad. (0.0) 1 0 10 0 6 7
multiquad. (0.5) 0 1 10 0 2 2
multiquad. (1.0) 0 0 10 0 0 0
thin-plate-spline (0.0) 2 8 1 3 0 1
thin-plate-spline (0.5) 1 0 10 0 0 1
thin-plate-spline (1.0) 0 1 10 0 2 2

situation-dependent, adaptive estimation with interpolation
(30 attempts per scene)

Gaussian (0.0) 29 30 0 27 30 30
Gaussian (0.5) 0 11 30 0 30 0
Gaussian (1.0) 0 0 30 0 0 0
multiquad. (0.0) 0 0 30 0 0 0
multiquad. (0.5) 0 0 30 0 30 30
multiquad. (1.0) 0 0 30 0 0 1
thin-plate-spline (0.0) 14 30 0 24 28 28
thin-plate-spline (0.5) 0 0 28 3 1 0
thin-plate-spline (1.0) 0 0 30 0 30 30
Table 4. Number of taking the best action grouped by experiment and type of the
extended behavior network.

It can be seen that the best performance is achieved with the Gaussian
interpolation method. With respect to the situation-dependent, adaptive version
of the extended behavior network, the system was able to select the best actions

11

despite scene 3 in experiment 1. It has to be mentioned that the performance of
the extended behavior network with fixed expectation values depends on chosen
values. The parameters used in Table 2 are based on own experiences and trials.
Finding the best action for most of the scenes with fixed expectation values
would require a parameter optimization procedure.

Figure 5 shows an example of the convergence capability of the situation-
dependent, adaptive extended behavior network. The graph shows very fast con-
vergence towards the optimal action in experiment 2 in scene 1. The result is
consistent with the fact that the system was able to select the best action in this
scene 24 times by using thin-splate interpolation and pessimistic initialization.

Fig. 5. Exemplification of the convergence of the adaptive, situation-dependent utility
extended behavior network. The graph refers to exeperiment 2, scene 1. The interpo-
lation method is thin-splate spline, and pessimistically. The optimal action is passTo3.

4 Conclusion and Future Work

In this paper, we have shown a modification to extended behavior networks by
Dorer. We exchanged static expectation values by situation-dependent utility
functions for the effects of actions. Our evaluation shows first promising results,
and suggests the application of the adaptive, situation-dependent version of ex-
tended behavior networks.

For future work, we will integrate other kinds of interpolation methods. In-
teresting approaches are Shephard’s interpolation [15], and the nearest-neighbor
interpolation. Another topic is the application of our work to the entire decision
making of a simulated soccer robot. This would make it possible to observe the
effects of the behavior over entire games, and consequently, makes it possible to

12

compare the performance of various methods on a game result basis. Finally, a
lot of data can be recorded to serve as an input for training networks. We will
also work towards an application of the proposed method on robotic hardware.

References

1. Dorer, K.: Behavior networks for continuous domains using situation-dependent
motivations. In: IJCAI. Volume 99., Citeseer (1999) 1233–1238

2. Dorer, K.: Motivation, Handlungskontrolle und Zielmanagement in autonomen
Agenten. PhD thesis, PhD thesis, Albert-Ludwigs-Universität Freiburg, Freiburg
(1999)

3. Dorer, K.: Extended behavior networks for behavior selection in dynamic and
continuous domains. In: Proceedings of the ECAI workshop Agents in dynamic
domains, Valencia, Spain, Citeseer (2004)

4. Ros, R., Arcos, J.L., de Mantaras, R.L., Veloso, M.: A case-based approach for
coordinated action selection in robot soccer. Artificial Intelligence 173(9) (2009)
1014 – 1039

5. Wu, C., Lee, T.: A fuzzy mechanism for action selection of soccer robots. Journal
of Intelligent and Robotic Systems 39(1) (2004) 57–70

6. Konur, S., Ferrein, A., Ferrein, E., Lakemeyer, G.: Learning decision trees for
action selection in soccer agents. In: In Proc. of Workshop on Agents in dynamic
and real-time environments. (2004)

7. Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30(3-4) (1975)
407–428

8. Gerla, G.: Fuzzy logic: mathematical tools for approximate reasoning. Volume 11.
Springer Science & Business Media (2013)

9. Maes, P.: The dynamics of action selection. In: Proceedings of the 11th Interna-
tional Joint Conference on Artificial Intelligence - Volume 2. IJCAI’89, San Fran-
cisco, CA, USA, Morgan Kaufmann Publishers Inc. (1989) 991–997

10. Lowe, D., Broomhead, D.: Multivariable functional interpolation and adaptive
networks. Complex syst 2 (1988) 321–355

11. Duchon, J.: Splines minimizing rotation-invariant semi-norms in sobolev spaces.
In: Constructive theory of functions of several variables. Springer (1977) 85–100

12. Press, W.H.: Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press (2007)

13. Liesen, J., Mehrmann, V.: Die singulärwertzerlegung. In: Lineare Algebra. Springer
(2015) 313–321

14. Laue, T., Spiess, K., Röfer, T.: Simrobot - a general physical robot simulator and
its application in robocup. In Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.,
eds.: RoboCup 2005: Robot Soccer World Cup IX. Number 4020 in Lecture Notes
in Artificial Intelligence, Springer; http://www.springer.de/ (2006) 173–183

15. Gordon, W.J., Wixom, J.A.: Shepard’s method of ”Metric Interpolation” to bi-
variate and multivariate interpolation. Mathematics of Computation 32 (1978)
253–264

