
Large-scale Stochastic Scene Generation and
Semantic Annotation for Deep Convolutional

Neural Network Training in the RoboCup SPL

Timm Hess1,∗(�), Martin Mundt1,2,∗, Tobias Weis1, Visvanathan Ramesh1,2

1. Goethe University Frankfurt
Software Engineering for Computer Vision, Bembelbots,

Frankfurt am Main, Germany,
{hess, weis}@ccc.cs.uni-frankfurt.de

2. Frankfurt Institute for Advanced Studies (FIAS),
Frankfurt am Main, Germany,

{mundt, ramesh}@fias.uni-frankfurt.de

Abstract. Object detection and classification are essential tasks for any
robotics scenario, where data-driven approaches, specifically deep learn-
ing techniques, have been widely adopted in recent years. However, in the
context of the RoboCup standard platform league these methods have
not yet gained comparable popularity in large part due to the lack of
(publicly) available large enough data sets that involve a tedious gather-
ing and error-prone manual annotation process. We propose a framework
for stochastic scene generation, rendering and automatic creation of se-
mantically annotated ground truth masks. Used as training data in con-
junction with deep convolutional neural networks we demonstrate com-
pelling classification accuracy on real-world data in a multi-class setting.
An evaluation on multiple neural network architectures with varying
depth and representational capacity, corresponding run-times on current
NAO-H25 hardware, and required sampled training data is provided.

1 Introduction

By the middle of the 21st century artificial intelligence based humanoid soccer
robots are envisioned to win against a human team in a football game complying
with official FIFA rules. At all times an instance model of the current situation
is required to enable the complex interplay of sensing, control and prediction.
Detection and classification of the agent’s surroundings are essential constituents
in the visual component of such a world model. By successively alleviating envi-
ronmental constraints, e.g. illumination and color cues, the RoboCup challenge
strives to capture real-world complexity. This results in greater need for effi-
cient, robust real-time computer vision systems. The contemporary landscape
of RoboCup research is at large dominated by model-driven approaches rely-
ing heavily on human engineered vision pipelines [1–4] that require substantial

∗Authors contributed equally

amounts of domain expertise to construct. Due to the rise of computational
power and availability of large data sets deep convolutional neural networks
(CNNs) have increased in popularity in both academia and industry and have
been shown to perform exceptionally well on many vision tasks in the course of
the last years [5–7]. With [8] and [9], only recently some of these advances have
been applied to the Standard Platform League (SPL). Both of these works focus
on binary classification of (NAO) robots and balls alone.

However, the successful training of deep neural networks depends on exten-
sive, tediously gathered, curated and annotated data sets. To generalize well
these data sets need to span the space of potential inputs as thoroughly as pos-
sible, oftentimes rendering deep neural network approaches infeasible. Building
on advances in computer graphics and respective publicly available graphics-
/game-engines (e.g. [10], [11]) this issue can in principle be adressed by resorting
to generated synthetic instances of the domain in question. Practicality in sev-
eral domains has been demonstrated in the context of deep learning [12–16],
although a careful consideration of the underlying assumptions in the generative
model with respect to the task is crucial to avoid statistical mismatches in the
data distributions that ultimately determine the overall viability of data driven
approaches.

In this work we develop an automated framework, using a state of the art
real-time rendering engine [11], for the generation of semantically annotated
images of simulated SPL scenes through systematic mapping of geometric and
photometric priors derived from specifications (e.g. [17]). In a series of experi-
ments we demonstrate compelling results, evaluate tradeoffs in choice of differ-
ent CNN architectures with respect to accuracy and runtime performance on
the NAO-H25 robot and present insights in terms of required sampling density.
Due to the modular nature of the simulation framework it is readily extensi-
ble to novel conditions coinciding with the goal of the RoboCup. To promote
transparency and reproducibility in research, we open-source our contributions
at https://github.com/TimmHess/UERoboCup.

2 Generative Scene Model

First, objects and their relative pose expressed in the form of meshes are assigned
to geometrical parameters, whereas properties related to lighting and respec-
tively the scattering, transmission and reflection thereof fall into the category
of photometric parameters. We formalize the priors known from specifications
in form of distributions and formulate the scene generation process in terms of
stochastic sampling.

2.1 Geometric Parameters

A typical scene in a SPL match is comprised of a limited set of objects, that is
one ball, a maximum of ten robots, two goals and the playing field, as well as a
set of light sources. Being entirely static in nature, the playing field F, with a

spatial extent of Fw × Fh = 9 m × 6 m [17], defines the geometrical boundaries
for the placement of the other objects in a two-dimensional Cartesian coordinate
system. To ensure approximately equal numbers of objects in the camera field
of view for the later sampling of photometric parameters, the ball B is chosen
as the central component in the stochastic scene generation process. We define
the distribution on its spatial position to stem from two independent uniform
distributions:

p(Bx,y) = (U(0,Fw), U(0,Fh)) . (1)

A first robot Rcam
x,y,α, parametrized by its spatial position x, y and angle α from

whose viewpoint the scene will later be rendered, is sampled such that it has
a distance d to the ball and is placed randomly on the circle defined by above
radius:

p(Rcam
x,y|Bx,y) = Bx,y +

[
cos (φ) − sin (φ)
sin (φ) cos (φ)

] [
0 d
]T

. (2)

Here distance d ∼ U (0.3 m, 1.5 m), matched to the robots’ static head pose with
lowest pitch (spanning the vertical field of view), and angle φ ∼ U(0, 2π) are also
chosen to be uniformly distributed. In order to vary the horizontal position of the
ball in the camera’s field of view, an angular offset γ ∼ U(−30.5,+30.5)π(180)−1

is uniformly sampled corresponding to the horizontal field of view of current
NAO hardware [18]. Letting β be the angle between Rcam

x,y and Bx,y in the field’s
coordinate system, then the angle of the robot is given by

p(Rcam
α |β) = β + γ . (3)

NR (in a typical game NR = 9) other robots are uniformly placed on the field
according to

p(Ri
x,y,α) = (U(0,Fw), U(0,Fh), U(0, 2π)) , i ∈ {0, .., NR} . (4)

Three different types of robots are considered (standing, sitting and lying), which
we model using a categorical distribution with probabilities 0.8, 0.1 and 0.1, that
have not been denoted in equations for the sake of simplicity.

Currently light sources are placed in an evenly spaced 3 × 2 grid 3 m above
the field. The arrangement and quantity can in principle also be sampled from
any distribution but has not yet been included in the current model.

2.2 Photometric Parameters

Consistent with a physics based model, light sources L are characterized through
intensity LI and temperature LT [19], the latter effectively defining the illumi-
nants’ color. Given a set of NI intensities, each represented by a normal distri-
bution, we sample a light intensity according to

p(LI |k) = N (µk, σk), k ∼ U(1, NI) , (5)

assuming a range from 1700 lm, corresponding to a 100 W light-bulb [20], to
4000 lm approximating an upper limit of current consumer LED flood lights.

The intensity value LI in equation 5 is applied to all light sources in the scene,
expressing the belief that venues are constructed in a self-consistent manner.
The variance parameter σk models small perturbations as consequence of wear,
current fluctuations and other forms of minor but non-negligible deviations and
is thus assumed to be a small constant.
We restrict illuminant colors to follow the black body locus with D65 standard
illuminant between temperatures of Tlow and Thigh, and sample uniformly from
this space:

p(LT) = U(Tlow, Thigh) . (6)

Reasonable temperatures range from 3000 K to 12 000 K, spanning light-colors
from yellow to white to blue .
As noted in the specifications of the SPL league, the playing field is restricted to
be of green color. For ease of notation, we use the HSV colorspace and sample
uniformly from

p(FH,S,V) =
(
U(Hlow, Hhigh), U(Slow, Shigh), U(Vlow, Vhigh)

)
, (7)

where the hue is set to be between Hlow = 100° and Hhigh = 140° resembling
shades of green. Slow = 0.5, Shigh = 1.0 and Vlow = 0.25, Vhigh = 1.0 determine
saturation and brightness. Lower limits of S and V have been chosen to exclude
under-saturated and too dark colors.

3 Rendering and Semantic Annotation Workflow

Even though sophisticated ray-tracing rendering engines are capable of produc-
ing highly photo-realistic images [10], the use of intricate sampling techniques
usually comes at the expense of high computational complexity. At the same
time, modern deep learning methods require tremendous amounts of data to
achieve state-of-the-art results.

The combination of former factors determines the speed at which new data
in sufficient quantity can be produced whenever the need to adapt to novel con-
ditions in either the generative model or the deep neural architecture arises. Ac-
cordingly, a crucial step is to identify a reasonable compromise between resource
consumption and rendering fidelity. While a detailed analysis of the latter is out
of scope of this work, we decided to use Epic Games’ Unreal Engine 4 (UE4) [11]
amongst other alternatives as it satisfies above mentioned requirements to the
best of the authors’ knowledge. A further aspect taken into consideration was
the usability of the rendering software, specifically the open-source nature and
underlying coding framework and interfaces, that permit modification of source
code (For UE4 this is C++ code). While providing visually plausible images
resulting from the underlying physically based shading [19], the real-time capa-
bilities on current graphics processing units (GPU) are considered a substantial
benefit.

We develop a rendering workflow, illustrated in figure 1, in consolidation
with the priors derived in section 2. Due to their constancy in placement and

Set scene parameters

Object placement

Occlusion check

Render image

Create GT

Photometric parameters
ΨP ∼ (p(LI) ×

p(LT) × p(FH,S,V))

Geometric parameters
ΨG ∼ (p(Bx,y) ×

p(Rcam
x,y,α|Bx,y) × p(Ri

x,y,α))

no

yes

×NG×NP

Fig. 1. The rendering workflow including the sampling processes of parameters. First,
photometric parameters are used to set the scene, for which NG different geometric
configurations of objects are stochastically simulated. For each configuration an occlu-
sion check is performed to ensure visibility of the ball before an image is rendered and
the corresponding semantic ground truth segmentation mask is obtained. An overall
amount of NP scene configurations are sampled in this fashion.

geometry, the playing field as well as the goals are placed in a first step. A set of
photometric parameters ΨP is sampled from the distributions described in equa-
tions 5, 6 and 7 and corresponding scene attributes are set. For a given scene, NG
geometric configurations ΨG are drawn from the joint distribution of the proba-
bilities given in equations 1, 2, 3 and 4. For each such configuration, we cast a ray
to perform a collision check to determine whether the ball is occluded by more
than 50 % by another object. If this occurs, sampling of ΨG is repeated. Oth-
erwise the image is rendered and a semantically annotated ground-truth mask
(GT) is created as explained below. This procedure is repeated for NP distinct
scene settings, each with NG varying geometric configurations, resulting in an
overall amount of NP×NG annotated images. The respective object meshes were
created using Blender [10], excluding the NAO robot which is provided by [21].
The full pipeline including parameters and their distributions has been exposed
and can be modified by the user through UE4’s Blueprint framework (graphical
user interface).

Apart from the evident benefit of saving time by making manual image anno-
tation obsolete, automatic segmentation further guarantees bias- and error-free
ground truth data. Objects of interest are selected from the list of entities present
in the scene. For each pixel in the rendered image, we perform a ray-cast. If the
first collision of the ray is with an object of interest, the respective index is writ-
ten to the corresponding pixel in the segmentation mask. A file containing the
mapping between indices and objects is generated.

Figure 2 showcases several example images using a discretized parameter set
for ease of visualization. Three ranges of temperatures, reflecting white (6000-
7000 K), yellow (3000-4500 K) and blue (8000-12 000 K) tints that have empiri-
cally been observed to be most common in competition venues, are illustrated.
Furthermore, two intensity-distributions Nk1 and Nk2 (µk1 < µk2) are depicted.

LT ∼ U (6000 K, 7000 K) LT ∼ U (3000 K, 4500 K) LT ∼ U (8000 K, 12 000 K)
LI ∼ Nk1 LI ∼ Nk2 LI ∼ Nk1 LI ∼ Nk2 LI ∼ Nk1 LI ∼ Nk2

F
V

=
v 1

F
V

=
v 2

F
V

=
v 3

G
T

R
ea

l

Fig. 2. Top three rows present a subset of rendered images drawn from the generative
model. For ease of visualization, we chose images that correspond to discretized model
parameters for the distributions of LT , LI and FV . Ranges for LT reflect white, yellow
and blue color casts, the selected means of the intensity-distributions are equal to
µk1 = 1700 lm and µk2 = 3600 lm with σk1 = σk2 = 50. The shown field colors represent
green (H = 120°, S = 1.0) with different brightness values v1 = 0.85, v2 = 0.45 and
v3 = 0.65. Semantic segmentation masks (GT) are visualized for the images in the
third row. The bottom row shows real images for qualitative comparison.

In the same spirit, three HSV-values with H = 120°, S = 1.0, V ∈ {v1 =
0.85, v2 = 0.45, v3 = 0.65}, corresponding to light, dark and medium bright
green colors are depicted. Furthermore, respective ground truth segmentation
masks for the third row images are shown. Real images have been included for
qualitative comparison.

4 Deep Learning from Synthetic Images

To demonstrate the potential of our approach we evaluate deep convolutional
neural networks in a classification context, where the training process is per-
formed using synthetic images from our rendering workflow and accuracy is
measured exclusively on real data. We consider a multi-class categorization com-
prised of the classes: robot, ball, goal post and field. The reason we do not include
backgrounds outside the field boundaries stems from the assumption that com-
mon pre-processing steps are readily capable of identifying field boundaries.

Deep convolutional neural networks are typically trained using some form
of stochastic gradient descent algorithms where the parameters Θ of a (deep)
neural network are optimized such that a loss function L is minimized:

Θ = arg min
Θ

1

N

N∑
n=1

L (xn, Θ) . (8)

Here x1,2···N denotes the training data set, and the optimization process is split
into steps involving mini-batches x1,2...m using estimates of the loss function’s
gradient with respect to the network’s parameters. Using mini-batches is an
often employed technique to speed up the optimization process and to introduce
stochasticity into the gradient in order to let our network escape local minima
[22]. In addition to mini-batches we apply momentum and weight decay term.
The former in principle quickens learning convergence when gradients are aligned
in subsequent steps, whereas the latter is a L2 regularization term. The interested
reader is pointed to [23] for a detailed description of optimization methods and
their subtleties.

4.1 Data and Training Hyper-parameters

We derive a dataset of 25000 patches per class coming from an equivalent amount
of unique scene configurations, without further augmentation. Here, a patch is
defined as a rectangular image region spanning the area of an object and is
extracted based on the semantically annotated mask, see section 3 for details
on how the mask is generated. A test set containing 780 patches per class has
manually been extracted and annotated from real images taken in regular SPL
game scenarios1. The training and evaluation of convolutional neural networks
has been conducted using torch7 [24] on a single NVIDIA GTX 1080 GPU,
deployment on the NAO robot has been realized by loading our trained networks
with tiny-dnn [25] for optimized CPU usage. For our experimental evaluation of
the neural networks we determine four suitable network structures with varying
depths inspired by the works of [5, 6] and chose a set of possible feature amounts
in conjunction with runtime considerations on the current NAO hardware. For
each of the four network structures the amount of features is determined by
a parameter Cf , where Cf effectively represents a network’s representational
capacity as the layers are defined to contain an amount of features equivalent
to either 2Cf or 2Cf+1 and Cf ∈ {1, 2, . . . , 6}. Consistent with [6] we express all
”fully-connected” layers in the classifier through convolutions with spatial filter
size 1× 1 both due to efficiency in computational implementation and accuracy
[26]. All pooling layers compute a conventional max pooling operation. Each layer
is furthermore followed by a Dropout [27] where 25 % of a layer’s output units, or
respectively 50 % in fully-connected layers, is stochastically dropped. Activation
functions are chosen to be Rectified Linear Units (ReLUs) [28], initialization

1We acknowledge contributions of parts of the real data generously provided by the
following teams: HULKs, HTWK and SPQR

Table 1. CNN architectures with number of layers, spatial feature sizes and quantities,
pooling dimensionality and added zero-padding. Architectures BBN-S and BBN-M are
conceptually equal with the later having an extra layer and thus more representational
complexity. BBN-M-C replaces the fully-connected structure with a single convolutional
layer without an activation function to map directly onto the classes. BBN-L increases
representational capacity through features with increased spatial size.

BBN-S BBN-M BBN-M-C BBN-L

Conv 1
No. Features | Size 2Cf | 5x5 2Cf | 5x5 2Cf | 5x5 2Cf | 8x8

Zero-Padding 2 2 1 4

Pooling Size | Stride 2x2 | 2 2x2 | 2 2x2 | 2 4x4 | 2

Conv 2
No. Features | Size 2Cf+1 | 3x3 2Cf+1 | 3x3 2Cf+1 | 3x3 2Cf+1 | 8x8

Zero-Padding 1 1 1 3

Pooling Size | Stride 2x2 | 2 2x2 | 2 2x2 | 2 4x4 | 2

Conv 3
No. Features | Size - 2Cf+1 | 3x3 2Cf+1 | 3x3 2Cf+1 | 5x5

Zero-Padding - 1 1 3

Pooling Size | Stride - 2x2 | 2 2x2 | 2 2x2 | 2

F-Conv 1
No. Features | Size 256 | 1x1 256 | 1x1 - 512 | 1x1

Stride, Padding 1 | 0 1 | 0 - 1 | 0

F-Conv 2
No. Features | Size 128 | 1x1 128 | 1x1 - -

Stride | Padding 1 | 0 1 | 0 - -

Output No. Features | Size 4 | 1x1 4 | 1x1 4 | 3x3 4 | 1x1

follows the scheme proposed in [29] and cross-entropy has been used as a loss-
function. One of the networks (BBN-M-C) replaces the fully-connected structure
with a single convolutional layer without an activation function to map directly
onto the classes similar to [6].

Hyper-parameters have been determined using a random search as presented
in [30] on log-uniform scales with 20 % of training data extracted uniformly and
used for cross-validation. In particular the learning rate (100, 10−1, . . . , 10−4),
mini-batch size (16, 32, . . . , 128) and pre-processing methods (no pre-processing,
zero-mean centering and global contrast normalization, see [23]) have been con-
sidered. Spatial input size of 32×32, a weight-decay of 5 ·10−4 and a momentum
term of 0.9 are kept constant. We determined the following set of parameters
that are used in all subsequent experiments: an initial learning rate of 10−2,
a mini-batch size of 64 without any form of pre-processing. In addition to the
initial learning rate we create a learning rate schedule, dividing the learning rate
by a factor of 5 every 16 epochs, consistent with an observable plateau in our
validation curve. With these parameters we trained for an overall of 40 epochs.

4.2 Network Accuracy, Capacity and Runtime Evaluation

We evaluate the influence of the representational capacity Cf on achieved ac-
curacy and runtime for the previously determined hyper-parameters on the set

1 2 3 4 5 6
Capacity parameter Cf

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

BBN-S
BBN-M
BBN-M-C
BBN-L

train
train
train
train

test
test
test
test

BBN-S
BBN-M
BBN-M-C
BBN-L

train
train
train
train

test
test
test
test

1 2 3 4 5
Capacity parameter Cf

0

20

40

60

80

100

120

140

160

180

200

R
un

tim
e

[m
s]

BBN-S
BBN-M
BBN-M-C
BBN-L

BBN-S
BBN-M
BBN-M-C
BBN-L

Fig. 3. Top panel: Train and test accuracies for the architectures defined in table 1 in
dependence on the capacity parameter Cf shown in a log2-uniform scale. Experiments
were repeated five times for statistical consistency. Shaded regions represent minimum
and maximum deviations from the obtained mean values. The hatched area depicts a
(local) optimum of effective network capacity with under-fitting regimes for smaller and
over-fitting present for larger Cf values. Bottom panel: Corresponding runtime on the
NAO robot’s hardware for different Cf , evaluated and averaged on a thousand forward
passes. The range is constrained to ensure that the area of interest (low runtimes) is
adequately resolved and the overall trend (power law behavior) is clear.

of proposed neural network architectures. For statistical consistency we repeat
network training and evaluation processes five times and report runtimes as the
mean of a thousand forward passes. In the top panel of figure 3 correspond-
ing train and test accuracies are illustrated, whereas respective runtimes can
be found in the bottom panel. Cf < 3 results in evident under-fitting, values
greater than 3 seem to lie in a general over-fitting regime. While technically the
test accuracy could plummet completely in this regime, the use of weight-decay
counteracts this behavior resulting in only little loss in accuracy. In conjunc-

0 0.5 1 2 3 4 5
Sample size factor Sn

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

BBN-S
BBN-M
BBN-M-C
BBN-L

test
test
test
test

BBN-S
BBN-M
BBN-M-C
BBN-L

test
test
test
test

Fig. 4. Accuracy of the proposed networks with Cf = 3 on differently sized training
sets. The sample size factor Sn determines a fraction (2Sn)−1 of the original training
set size (25000 per class). Consistent with previous experiments, the mean accuracy of
five repetitions is visualized. Shaded regions represent the deviations.

tion with the evaluated runtimes on current NAO-H25 hardware it can be ob-
served that all networks with Cf > 3 improve neither accuracy nor runtime. For
Cf = 3, the BBN-L network is able to achieve a best overall mean accuracy of
94.40 %(±0.6 %). However with only 0.88 % less accuracy and a mean runtime of
21.58 ms in contrast to 69.65 ms, the BBN-M-C network represents an applicable
alternative regarding runtime requirements.

4.3 On Sampling Complexity

It remains an open question to what degree the sampling density influences
achievable accuracy. For the presented task, we gain intuition and insights on the
sampling density in our stochastic scene generation process for the given neural
networks. From the originally generated training data set (25000 images per
class) we repeatedly uniformly sample a fraction (2Sn)−1 of the initial quantity,
where we refer to Sn as the sample size factor. Figure 4 shows the corresponding
obtained accuracies. A clear correlation between sampling size and accuracy can
be observed. Naturally, less data generally leads to worse performance.

5 Conclusion

We developed a stochastic scene generation process for the RoboCup SPL, con-
sisting of a generative model and synthetic image and semantically enriched
ground-truth creation employing a state-of-the-art physically based rendering
engine [11]. Compelling multi-class classification results on real-world data have
been demonstrated on a variety of deep convolutional neural network architec-
tures that have been trained entirely from 3-D simulation. The space of neural

network architectures, capacity, run-time and data quantity has systematically
been probed, analyzed and insights have been shared. Our best network in terms
of accuracy and speed is able to achieve approximately 94 % accuracy in less than
22 ms per patch on current NAO-H25 hardware. Therefore the error-prone, te-
dious and time consuming manual human annotation and data gathering tasks
have successfully been replaced.

Our approach provides the means for several future research prospects, that
could include, but are not limited to: inferring the relative importance of indi-
vidual scene parameters related to the image generation process (e.g. geometry,
photometry, texture, etc.) for computer vision algorithms, the extension of the
deep convolutional neural network based approach to detection approaches such
as pixel-wise semantic image segmentation [31, 16] or the general inclusion of fur-
ther available information such as depth. Being modular in nature, the rendering
workflow is furthermore readily extensible to generation of temporally coherent
scenes for potential use in localization, navigation and motion-estimation tasks.

References

[1] Schwarz, I., Hofmann, M., Urbann, O., Tasse, S.: A robust and calibration-
free vision system for humanoid soccer robots. In: RoboCup 2015: Robot
World Cup XIX, LNAI, vol. 9513, pp. 239–250. Springer (2015). DOI
10.1007/978-3-319-29339-4 20

[2] Härtl, A., Visser, U., Röfer, T.: Robust and efficient object recognition for
a humanoid soccer robot. In: Robot Soccer World Cup XVII, LNCS, vol.
8371, pp. 396–407. Springer (2013). DOI 10.1007/978-3-662-44468-9 35

[3] Metzler, S., Nieuwenhuisen, M., Behnke, S.: Learning visual obstacle detec-
tion using color histogram features. In: Robot Soccer World Cup XV, LNCS,
vol. 7416, pp. 149–161. Springer (2011). DOI 10.1007/978-3-642-32060-6 13

[4] Qian, Y., Lee, D.D.: Adaptive field detection and localization in robot soc-
cer. In: RoboCup 2016: Robot World Cup XX. Springer (2016)

[5] Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.:
Maxout networks. JMLR 28, 1319–1327 (2013)

[6] Lin, M., Chen, Q., Yan, S.: Network in network. CoRR (2013). DOI
abs/1312.4400

[7] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: CVPR, pp. 770–778 (2016). DOI 10.1109/CVPR.2016.90

[8] Albani, D., Youssef, A., Suriani, V., Nardi, D., Bloisi, D.: A deep learning
approach for object recognition with nao soccer robots. In: RoboCup 2016:
Robot World Cup XX, LNAI. Springer (2016)

[9] Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup
soccer using convolutional neural networks. In: RoboCup 2016: Robot World
Cup XX, LNAI. Springer (2016)

[10] Blender.org: Blender. https://www.blender.org/. Accessed: 12.03.2017
[11] EpicGames: Unreal engine 4. https://www.unrealengine.com/. Accessed:

12.03.2017

[12] Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source
movie for optical flow evaluation. In: ECCV, LNCS 7577, pp. 611–625.
Springer (2012). DOI 10.1007/978-3-642-33783-3 44

[13] Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V.,
van der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow
with convolutional networks. In: ICCV (2015)

[14] Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground
truth from computer games. In: European Conference on Computer Vision,
pp. 102–118. Springer (2016). DOI 10.1007/978-3-319-46475-6 7

[15] Lerer, A., Gross, S., Fergus, R.: Learning physical intuition of block towers
by example. In: ICML, vol. 48, pp. 430–438 (2016)

[16] Veeravasarapu, V.S.R., Rothkopf, C.A., Ramesh, V.: Model-driven sim-
ulations for deep convolutional neural networks. CoRR (2016). DOI
abs/1605.09582

[17] Committee, R.T.: Robocup rulebook. http://www.tzi.de/spl/pub/Website/
Downloads/Rules2016.pdf. Accessed: 14.03.2017

[18] SoftbankRobotics: Nao h25 technical specifications. http://doc.aldebaran.
com/2-1/family/nao h25/index h25.html#nao-h25. Accessed: 26.03.2017

[19] Karis, B., Games, E.: Real shading in unreal engine 4. SIGGRAPH (2013).
Physically Based Shading Theory and Practice

[20] docs.unrealengine.com: Lighting basics. https://docs.unrealengine.com/
latest/INT/Engine/Rendering/LightingAndShadows/Basics/. Accessed:
26.03.2017

[21] SoftbankRobotics: Naomodel. https://community.ald.softbankrobotics.
com/en/resources/software/language/en-gb. Accessed: 14.03.2017

[22] Wilson, D., Martinez, T.R.: The general inefficiency of batch training for
gradient descent learning. Neural Networks 16, 1429–1451 (2003). DOI
10.1016/S0893-6080(03)00138-2

[23] Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT Press (2016)
[24] Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A matlab-like envi-

ronment for machine learning. In: BigLearn, NIPS Workshop (2011)
[25] Zheltonozhskiy, E.: Tinydnn. https://github.com/tiny-dnn/tiny-dnn

(2017). Accessed: 12.03.2017
[26] Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for

simplicity: The all convolutional net. In: ICLR (workshop track) (2015)
[27] Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov,

R.: Dropout: a simple way to prevent neural networks from overfitting.
JMLR 15, 1929–1958 (2014)

[28] Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks.
In: JMLR, AISTATS’11, vol. 15, pp. 315–323 (2011)

[29] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedfor-
ward neural networks. In: JMLR, AISTATS’10, vol. 9, pp. 249–256 (2010)

[30] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization.
JMLR 13, 281–305 (2012)

[31] Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs. CoRR (2016). DOI abs/1606.00915

