Concurrent Hierarchical Reinforcement Learning for
RoboCup Keepaway

Aijun Baif, Stuart Russell{, and Xiaoping Chen}

1 Computer Science Division, Univerisity of California at Berkeley
{aijunbai, russell}@berkeley.edu
1 Department of Computer Science, University of Science and Technology of China
xpchen@ustc.edu.cn

Abstract. RoboCup Keepaway, originated from the RoboCup soccer simula-
tion 2D challenge, has been widely used as a machine learning benchmark. In
this paper, we present a concurrent hierarchical reinforcement learning approach
to RoboCup Keepaway. Following the idea of hierarchies of abstract machines
(HAMs), we write a partial policy as a HAM from the perspective of a single
keeper, run multiple instances of the HAM, and use reinforcement learning to
learn the optimal completion of the resulting joint HAM. Furthermore, we apply
the idea of exploiting the intrinsic internal transitions within the HAM struc-
ture for more efficient learning. Experimental results confirm that the concurrent
HAM approaches outperform the state of the art significantly on the very complex
RoboCup Keepaway domain.

Keywords: Hierarchical Reinforcement Learning, HAM, RoboCup Keepaway

1 Introduction

Reinforcement learning (RL) tackles the problem of learning a rewarding behavior in an
unknown environment via trial-and-error [18]]. Recent advances in RL have led to great
success on problems that pose significant challenges [12l15]. However, standard “flat”
RL algorithms often learn slowly in environments requiring complex behaviors, due to
the curses of dimensionality and history. Hierarchical reinforcement learning (HRL)
aims to scale RL by incorporating prior knowledge about the structure of good policies
into the algorithms [5]. Popular HRL solutions include the options theory [19]], the hier-
archies of abstract machines (HAMs) framework [[14l1], and the MAXQ approach [7].
One of the major advantages of HRL approaches is the possibility of exploiting tem-
poral abstraction and hierarchical control, where macro-actions following their own
polices until termination.

In this paper, we focus on building intelligent agents that play the game of RoboCup
Keepaway via hierarchical reinforcement learning. RoboCup Keepaway is a sub-task
of the RoboCup soccer simulation 2D challenge [10l17]. It has been widely used as
a machine learning benchmark [17]], which presents significant challenges to machine
learning methods, including continuous state and action spaces, multiple agents, and
long and variable delays in the effects of actions. In RoboCup Keepaway, one team

of keepers merely seeks to keep control of the ball for as long as possible. Follow-
ing the idea of HAMs, we write a partial policy as a HAM from the perspective of a
single keeper, run multiple instances of the HAM, and use reinforcement learning to
learn the optimal completion of the resulting joint HAM. We further apply the idea of
HAMQ-INT [3], a novel HRL algorithm that identifies and exploits internal transitions
within a HAM for efficient learning, to recursively shortcircuit the computation of Q
values whenever applicable. We empirically confirm that HAMQ-INT outperforms the
state of the art significantly on the benchmark RoboCup Keepaway domain. The main
contribution of this paper is that we apply HAMQ-INT successfully to the RoboCup
Keepaway domain, which, to the best of our knowledge, is the first application of the
HAM framework to a very complex domain.

The remainder of the paper is organized as follows. Section [2] introduces some re-
lated work. Section [3|briefly reviews some background on RoboCup Keepaway and the
HAM framework. Section [4] presents a concurrent HAM approach to RoboCup Keep-
away. Section 5 presents the proposed HAMQ-INT algorithms. Section [6|describes the
empirical result, and Section concludes with discussion of future work.

2 Related Work

Stone et al. [16] develop a linear SARSA algorithm for RoboCup Keepaway following
the options theory where the agent learns to select over a given set of low-level op-
tions. Along with some standard ball-controlling options, such as Pass() and Hold(),
the keeper is also given a GetOpen() option which encodes the moving strategy when
it is not controlling the ball. In their algorithm, each keeper learns separately assuming
that other keepers and takers are part of the environment. In the experiment, we adopt
their approach and develop an Option algorithm as one of the baselines. Kalyanakrish-
nan et al. [8] extend RoboCup Keepaway to Half Field Offense involving more agents
and more complex behaviors. The authors notice that the Option algorithm has very
sparse learning updates since each keeper is learning separately. They propose an inter-
agent communication mechanism to facilitate information sharing among the agents
and enable more frequent and reliable learning updates. In fact, since all the players
begin with the same initial Q function and make the same updates, their action-value
functions will always be alike, thereby reducing an essentially distributed problem to
one of centralized control. In the experiment, we develop a concurrent-Option algo-
rithm as an extension of this idea, where a global Q function is shared and maintained
among all learners. Kalyanakrishnan et al. [9] extend the Option algorithm by includ-
ing a specific learning component of the GetOpen() option. Their approach learns the
option-selection policy over the ball-controlling options and the GetOpen() option it-
eratively: when one component is learning, the other one is kept unchanged. In con-
trast, our methods learn the two components simultaneously in a unified hierarchical
reinforcement learning framework. Bai et al. [4] develop a MAXQ-based hierarchical
planning algorithm for RoboCup domain. In this paper, we focus on hierarchical rein-
forcement learning instead.

o)

Keepers

Fig. 1: A 3 vs. 2 instance of RoboCup Keepaway.

3 Background

In this section, we review some background on the RoboCup Keepaway task, reinforce-
ment learning and the general HAM framework.

3.1 RoboCup Keepaway

In RoboCup Keepaway, a team of keepers tries to maintain the ball possession within
a limited field, while a team of takers tries to take the ball. Figure |I| shows an instance
of Keepaway with 3 keepers and 2 takers. The system has continuous state and action
spaces. A state encodes positions and velocities for the ball and all players. At each
time step (within 100 ms), a player can execute a parametrized primitive action, such
as turn(angle), dash(power) or kick(power, angle), where the turn action changes the
body angle of the player, the dash action gives an acceleration to the player, and the
kick action gives an acceleration to the ball if the ball is within the maximal kickable
area of the player. All primitive actions are exposed to noises. Each episode begins with
the ball and all players at fixed positions, and ends if any taker kicks the ball, or the ball
is out of the field. The cumulative reward for the keepers is the total number of time
steps for an episode. Instead of learning to select between primitive actions, the players
are provided with a set of programmed options/skills including: 1) Stay() remaining
stationary at the current position; 2) Move(d, v) dashing towards direction d with speed
v; 3) Intercept() intercepting the ball; 4) Pass(k, v) passing the ball to teammate & with
speed v; and 5) Hold() remaining stationary while keeping the ball kickable. The takers
are assumed to follow fixed policies. The goal in RoboCup Keepaway is then to learn
best-response policies for keepers on top of the provided low-level skills.

3.2 Reinforcement Learning with Hierarchies of Machines

Reinforcement Learning Reinforcement learning (RL) usually tackles the problem
of learning a rewarding behavior in an unknown environment modeled as a Markov
decision process (MDP). Formally, an MDP is a tuple (S, A, T, R,), where S and
A are the state and action spaces, T'(s'|s,a) and R(s, a) are the transition and reward
functions, and « is a discount factor [6]. The goal for an MDP is to find an optimal

Navigate Machine

“

Move(speed) Machine

West(speed)

~atDest
South(speed)
—’“-
Onh(speedj

East(speed)

Fig.2: An example of a HAM for a mobile robot.

policy T : S — A that maximizes the expected cumulative reward. In the setting
of reinforcement learning, an agent learns an optimal policy by interacting with its
environment. A Q learning agent achieves this by performing Q update, once it reaches
state s’ with reward r after executing action a in state s:

Q(s,a) + (1 —a)Q(s,a) + « <r + ’YI’I}La;XQ(S',a/)) , 1)

where « is a learning rate. Semi Markov decision processes (SMDPs) allow for actions
that take multiple time steps to terminate. The transition function for an SMDP has the
form T'(s’, N|s, a), where N is the number of time steps that action a takes. Similarly,
the Q update rule for a SMDP is:

Qs,0) (1=)Q(s,0) + a (r +77 maxQ(s',a')) @

where 7 is number of time steps elapsed after executing action a in state s and before
reaching state s’, and r is the cumulative reward in-between.

The HAM Approach The idea of HAM is to encode a partial policy for an agent as
a set of hierarchical finite state machines with unspecified choice states, and use RL to
learn its optimal completion. We adopt a different definition of HAM, allowing arbitrary
call graph, despite the original definition of Parr and Russell [14] which requires that
the call graph is a tree. Formally, a HAM H = {Ny, V1, ... } consists of a set of Moore
machines N; [13]], where N is the root machine which serves as the starting point of
the agent. A machine N is a tuple (M, X, A, 6, u), where M is the set of machine
states, Y/ is the input alphabet which corresponds to the environment state space .S, A
is the output alphabet, ¢ is the machine transition function with 6(m, s) being the next
machine state given machine state m € M and environment state s € S, and p is the
machine output function with p(m) € A being the output of machine state m € M.
There are 5 types of machine states: start states are the entries of running machines;
action states execute an action in the environment; choose states nondeterministically
select the next machine states; call states invoke the execution of other machines; and,
stop states end current machines and return control to calling machines. A machine

Run (N : machine, z : stack, s : environment state) :
z.Push (N)
m < N .start
while m # N .stop do
if Type (m) = action then
| s+« Execute (u(m))
else if Type (m) = call then
| s+ Run(u(m), z s m)
if Type (m) = choose then
z.Push (m)
L m < Choose (z, s, u(m))
z.Pop ()
else
| m <« d(m,s)

2P op ()
return s

Algorithm 1: Running a HAM.

N has uniquely one start state and one stop state, referred as A .start and N .stop
respectively. For start and stop states, the outputs are not defined; for action states,
the outputs are the associated primitive actions; for call states, the outputs are the next
machines to run; and, for choose states, the outputs are the sets of possible choices,
where each choice corresponds to a next machine state. For an example, see Figure
which shows a HAM for a mobile robot navigating in a grid map. The Navigate machine
has a choice state, at which it has to choose between Move(Fast) and Move(Slow). The
Move(speed) machine has to select repeatedly between East, West, South and North
with specified speed parameter until the robot is at its destination.

To run a HAM H, a run-time stack (or stack for short) is needed. Each frame of
this stack stores run-time information such as the active machine, its machine state,
the parameters passing to this machine and the values of local variables used by this
machine. Algorithm|T]gives the pseudo-code for running a HAM, where the Execute
function executes an action in the environment and returns the next environment state,
and the Choose function picks the next machine state given the updated stack z, the
current environment state s and the set of available choices 1(m). Let Z be the space
of all possible stacks given HAM 7. It has been shown that an agent running a HAM
‘H over an MDP M yields a joint SMDP H o M defined over the joint space of .S and
Z. The only actions of H o M are the choices allowed at choice points. A choice point
is a joint state (s, z) with 2.Top () being a choose state. This is an SMDP because
once a choice is made at a choice point, the system — the composition of H and M
— runs automatically until the next choice point is reached. The policy of this SMDP
implements exactly the Choose function in Algorithm [T} An optimal policy of this
SMDP corresponds to an optimal completion of the input HAM, which can be found
by applying a HAMQ algorithm [[14]]. HAMQ keeps track of the previous choice point
(s, z), the choice made ¢ and the cumulative reward r thereafter. Whenever it enters

Navigate (s : environment state) :
speed < Choose; (Slow, Fast)
s < Move (s, speed)

return s

Move (s : environment state, speed : parameter) :
while not s.atDest () do
L a < Chooses (West, South, North, East)

s <+ Execute (a, speed)
return s
Algorithm 2: A HAM in pseudo-code for a mobile robot.

into a new choice point (s’, z), it performs the SMDP Q update as follows:
Qs 2,0) = (1= a)Qs,2.0) +a (r+97 max Q(s', 2',))

where 7 is the number of steps between the two choice points.

As suggested by the language of ALisp [2], a HAM can be equivalently converted
into a piece of code in modern programming languages, with call-and-return semantics
and built-in routines for explicitly updating stacks, executing actions and getting new
environment states. The execution of a HAM can then be simulated by running the code
itself. This conversion is important, as it provides a much more efficient way of design-
ing and running a HAM. For example, the HAM shown in Figure [2]is equivalent to the
pseudo-code in Algorithm [2] where a machine becomes a function. Here, Execute
is the macro executing an action with specified parameters and returning the next en-
vironment state; the Choose macro extends the Choose function from Algorithm
to choose among not only a set of machine states, but also a set of parameters for the
next machine. Bookkeeping codes for maintaining the stack are omitted for simplicity.
Marthi et al. show that [11] multiple HAMs can be ran concurrently to form a joint
HAM, and the same reinforcement learning technique (namely the HAMQ algorithm)
can be applied to learn the optimal completion of the resulting joint HAM provided
with appropriate synchronization semantics among the concurrently running HAMs.

4 The HAM Approach to RoboCup Keepaway

We develop the partial policy represented as a HAM from the perspective of a single
keeper, and run multiple instances of this HAM concurrently for each keeper to form
a joint policy for all keepers following the proposal of [11]. To run multiple HAMs
concurrently, they have to be synchronized, such that if any machine is at its choose
state, the other machines have to wait; if multiple machines are at their choose states, a
joint choice is made instead of independent choice for each machine. For this purpose,
players have to share their learned value functions and the selected joint choice. A
joint Q update is developed to learn the joint choice selection policy as an optimal
completion of the resulting joint HAM. Algorithm [3|shows the HAM written in pseudo-
code for a single keeper. Here, Keeper is the root machine. The Run macro runs a

Keeper (s : environment state) :
while not s.Terminate () do

if s.BallKickable () then
| m < Choose; (Pass, Hold); s < Run (m, s)

else if s.FastestToBall () then
| s < Intercept (s)

else
| m < Choose; (Stay, Move) ; s <~ Run (m, s)

return s

Pass (s : environment state) .
k < Chooses (1, 2,...) ;v + Choosey (Normal, Fast)
while s.BallKickable () do
| s < Run (Pass, k, v)
return s

Hold (s : environment state) .
s < Run (Hold)
return s

Intercept (s : environment state) :
s < Run (Intercept)
return s

Stay (s : environment state) :

1 < s.TmControlBall ()

while i = s.TmControlBall () do
| s <Run (Stay)

return s

Move (s : environment state) :
d + Chooses (0° 90°, 180°, 270°) ; v - Chooseg (Normal, Fast)
7 < s.TmControlBall ()

while i = s.TmControlBall () do
| v <Run (Move, d, v)
return s

Algorithm 3: The HAM for RoboCup Keepaway.

machine or an option with specified parameters. BallKickable, FastestToBall,
TmControlBall are predicates used to determine the transition inside a machine. It
is worth noting that the Move machine only considers 4 directions, with direction 0°
being the direction towards the ball, and so on.

S Efficient Learning by Leveraging Internal Transitions

In this section, we introduce the concept of internal transition, and develop a hierarchi-
cal reinforcement learning algorithm that automatically identifies and exploits internal
transitions for efficient learning, following the idea of Bai et al. [3]].

5.1 Internal Transitions within HAMs

It has been observed that a HAM with deep hierarchical structure, where there are many
calls from a parent machine to one of its child machines over the hierarchy, induces
many internal transitions. An internal transition is a transition over the joint state space,
where only the run-time stack changes but the environment state does not. Internal
transitions always come with zero rewards and deterministic outcomes in the resulting
SMDP. Take the HAM for RoboCup Keepaway in Algorithm [3] as an example, there
are many internal transitions within this single HAM. For example, when the Pass
machine is selected at the choice point Choose; of the Keeper machine, the next
2 consecutive choice points must be Choose; and Choose, within the the Pass
machine. When multiple HAMs are executing concurrently according to the concur-
rent schema shown in [11]], there are even more internal transitions in the resulting
joint HAM. For example, in a scenario of the 3 vs. 2 Keepaway game, where only
keeper 1 can kick the ball, suppose the joint machine state is [Choose;, Chooses,
Choose,] with each element being the machine state of a HAM. If the joint choice
made is [Pass, Move, Stay], then the next 2 consecutive machine states must be
[Choosej, Chooses, Stay] and [Choose,, Chooseg, Stay].

In general, the transition function of the resulting SMDP induced by running a HAM
has the form T'(s', 2/, 7|s, z, ¢) € [0, 1], where (s, z) is the current choice point, ¢ is the
choice made, (s’, z’) is the next choice point, and 7 is the number of time steps. Given
a HAM with a deep hierarchy of machines, it is usually the case that there is no real
actions executed between two consecutive choice points, therefore the number of time
steps and the cumulative reward in-between are essentially zero. We call this kind of
transition an internal transition, because the machine state changes but the environment
state does not. Formally, a transition is a tuple (s, z, ¢, 7, s, z’) with r being the cumu-
lative reward. For an internal transition, we must have s’ = s and » = 0. In addition,
because the dynamics of the HAM after a choice has been made and before an ac-
tion is executed is deterministic by design, the next choice point (s, z’) of an internal
transition is deterministically conditioned only on (s, z, ¢). Let p(s, z, ¢) be the Z com-
ponent of the next choice point. If (s, z, ¢) leads to an internal transition, we must have
T(s, p(s,z,¢),0|s, z,¢) = 1. Therefore, we have

Q(S,Z,C) = V(s,p(s,z,c)) 3

= maXQ(Sa p(S, 2, C)v C/)-
C/

So, we can store the rules of internal transition as (s, z, ¢, z’) tuples, where 2z’ =
p(s, z,c). They can be used to recursively compute Q values according to Equation
when applicable. The size of the set of stored rules can be further reduced, because
the machine transition function § of a HAM is usually determined by a set of pred-
icates defined over environment state s, rather than the exact values of all state vari-
ables. For example, the machine transition function of machine Move(speed) in Figure
depends only on the value of atDest(s) for any state s. Suppose (s1, z,¢) leads to
an internal transition with (s, z’) being the next choice point. Let the set of predi-
cates used to determine the trajectory in terms of active machines and machine states
from z.Top () to z’.Top () be P = {Py, Pa,...}. Let the value of P given state s be

QUpdate (s : state, 2’ : stack, r : reward, t' : current time, P : evaluated predicates) :
ift' = ¢ then

| p[P,P(s),2,c| + 2’
else

L QTable (s, z,¢) « (1 — a) QTable (s, z,c) +a(r + 'yt,ft maxy Q(s',2',¢c))
(t,s,2) « (t',s',2)

Q (s : state, z : stack, c : choice) :
if AP s.t. (P, P(s), z,¢c) € pKeys () then
q 4+ —00
2« p[P,P(s), 2|
for ¢’ € u(z.Top ()) do
| ¢+ max(q,Q(s,z',c))
return g

else
| return QTable (s, z,c)

Algorithm 4: The HAMQ-INT algorithm.

P(s) = {Pi(s), P2(s), ... }. It can be concluded that the transition trajectory induced
by P depends only on P(sy), after choice c is made at choice point (s1, z). On the other
hand, if the set of predicates P over state so (so # s1) has the same value as of state
s1, namely P(s3) = P(s1), and the same choice ¢ is made at choice point (s3, 2), then
the followed transition trajectory before reaching the next choice point must also be the
same as of (s1, z,¢). In other words, (s9, z, ¢) leads to an internal transition such that
p(s1,2,¢) = p(sa,z,c).

Thus, the rule of internal transition (s1, 2, ¢, 2’) can be equivalently stored and re-
trieved as (P, P(s1), 2, ¢, 2’), which automatically applies to (sa, 2, ¢, 2’), if P(s2) =
P(s1). Here, 2’ is the stack of the next choice point such that 2’ = p(s1,2,¢) =
p(s2, z, ¢). The size of the joint space of encountered predicates and their values is de-
termined by the HAM itself, which is typically much smaller than the size of the state
space. For example, for a problem with continuous state space (such as the RoboCup
Keepaway domain we considered), this joint space is still limited. In summary, we can
have an efficient way of storing and retrieving the rules of internal transition by keeping
track of the predicates evaluated between two choice points.

5.2 The HAMQ-INT Algorithm

The main idea of HAMQ-INT is to identify and take advantage of internal transitions
within a HAM. For this purpose, HAMQ-INT automatically keeps track of the predi-
cates that are evaluated between two choice points, stores the discovered rules of inter-
nal transition based on predicates and the corresponding values, and uses the learned
rules to shortcircuit the computation of Q values whenever it is possible. To detect inter-
nal transitions, a global environment time ¢ is maintained. It is incremented by one only
when there is an action executed in the environment. When the agent enters a choice
point (s', 2") after having made a choice ¢ at choice point (s, z), and finds that ¢ is not

incremented since the previous choice point, it must be the case that s’ = s and (s, z, ¢)
leads to an internal transition. Let P be the set of predicates that have been evaluated be-
tween these two choice points. Then a new rule of internal transition (P, P(s), z, ¢, 2}
is found. The agent can conclude that for any state z, if P(z) = P(s), then (z, z, c)
leads to an internal transition as well. In the implementation, the agent uses a hash table
p to store the learned rules, such that p[P, P(s), z,¢] = 2/, if (P, P(s), z,¢,2’) isarule
of internal transition. One thing to note is that, because 2’ is deterministically condi-
tioned on (P, P(s), z, c) for an internal transition, the value of p[P, P(s), z, ¢] will not
be changed after it has been updated for the first time.

When the agent needs to evaluate a Q function, say Q(s, z, ¢), and finds that (s, z, c)
leads to an internal transition according to the current learned rules, Equation [3]is used
to decompose Q(s, z, ¢) into the Q values of the next choice points, which are evaluated
recursively in the same way, essentially leading to a tree of exact Bellman backups. In
fact, only the terminal Q values of this tree needs to be learned, enabling efficient learn-
ing for the agent. Algorithm [4] gives the pseudo-code of the HAMQ-INT algorithm.
Here, the QTable function returns the stored Q value as request. It can be implemented
in either tabular or function approximation ways. The Q function evaluates the Q value
of (s, z,c) tuple. It first checks whether (s, z, ¢) subjects to any learned internal transi-
tion rule. This is done by checking whether there exists an encountered set of predicates
P, such that (P,P(s),z,¢) € p.Keys (). The uniqueness of transition trajectory for
an internal transition ensures that there will be at most one such P. If there is such P,
Q uses the retrieved rule to recursively decompose the requested Q value according to
Equation |3} otherwise, it simply returns the stored Q value by querying QTable.

The QUpdate function performs the SMDP Q update. It is called once the agent
enters a new choice point. The caller has to keep track of the current state s’, the current
stack z’, the evaluated predicates P on state since the previous choice point and the
cumulative reward r in-between. If the current time ¢’ equals to the time ¢ of the previous
choice point, it must be the case that (s, z,¢, 0, s, 2’} is an internal transition. Thus, a
new rule (P, P(s), z, c) is learned, and the p table is updated accordingly. If ¢’ # ¢,
meaning there are some actions executed in the environment, it simply performs the
Q update. Finally, it uses the current (¢', s’, 2’) tuple to update the (global) previous
(t, s, z) tuple, so the function will be prepared for the next call.

6 Experiment

We compare concurrent-HAMQ-INT, concurrent-HAMQ, concurrent-Option, Option
and Random algorithms. The Option algorithm is adopted from [16], where the agent
learns an option-selection policy over Hold() and Pass(k, v) options if it can kick the
ball, otherwise it follows a fixed policy: if it is the fastest one to intercept the ball, it
intercepts; otherwise, it follows a GetOpen() option. The GetOpen() option, which
enables the agent to move to an open area in the field, is manually programmed before-
hand. In the original Option learning algorithm, each agent learns independently. We
argue that this setting is problematic, since it actually incorrectly assumes that other
keepers are stationary. We extend Option to concurrent-Option, by sharing the learned
value functions and the option selected. The HAM algorithms are not provided with

50 50

T T T T T
concurrent-HAMQ-INT = concurrent-HAMQ-INT ==

concurrent-HAMQ concurrent-HAMQ

40 L concurrent-Option = = - - 4
Option

Random

40 | concurrent-Option - - - -
Option
Random

30

20 -

Episode Duration (seconds)

10 -

Episode Duration (seconds)

>

0 5 10 15 20 25 30 35 0 2000 4000 6000 8000 10000
Training Time (hours) Number of Episodes

(a) b)

Fig. 3: Experimental result on a 3 vs. 2 instance of RoboCup Keepaway evaluated over
(a) training time and (b) number of episodes. Two short videos showing the initial and
converged policies of HAMQ-INT can be found at links |1 and 2| respectively.

the GetOpen() option. Instead, they have to learn their own versions of GetOpen() by
selecting from Stay and Move machines. Each taker follows the same fixed policy: it
always tries to intercept the ball. The Random algorithm is a non-learning version of
Option, which selects available options randomly.

The SARSA(\)-learning rule with a linear function approximator is used to imple-
ment the SMDP Q update for all learning algorithms. A state is represented as a vector
of 15 features consisting of some distances and angles calculated from the state, which
is then encoded as a huge binary vector following the file coding technique. The result-
ing binary vector has approximately 50,000 bits but is constrained to have only with
480 ones. For HAMQ approaches, a dynamically calculated hash value of the run-time
stack is used as its index. The learning rate o and the eligibility decaying rate \ are set
to be 0.125 and 0.5 respectively. Figure [3aand [3b]show the experiment result on a 3 vs.
2 instance of RoboCup Keepaway evaluated over training time and number of episodes
respectively. The data points are averaged using a moving window with size of 1000
episodes. The training time is accounted from the perspective of the simulated world
where a step/cycle takes exactly 100 ms. Provided with the same training time, algo-
rithms with better learning performance will result to less episodes, since they learn to
reliably control the ball very soon. It can be seen from the result that concurrent-Option
outperforms Option significantly, concurrent-HAMQ outperforms concurrent-Option
after about 15 hours of training, and concurrent-HAMQ-INT has the best performance.
We expect the reason to be 1) significantly less number of Q values have to be learned
because many of them are recursively decomposed into the combinations of other Q
values following the Bellman backup tree induced by recursively applying the learned
internal transition rules; and 2) one learned abstract internal transition rule from one
transition can be applied to unlimited number of other states in the case of continuous
state space.

https://www.youtube.com/watch?v=GFd0b3wV0Rk
https://www.youtube.com/watch?v=ob249J8Kxi0

7 Conclusions

In this paper, we present a concurrent hierarchical reinforcement learning approach to
the benchmark RoboCup Keepaway domain. We apply the idea of HAMQ-INT that
automatically discovers and exploits internal transitions within a HAM for efficient
learning. We empirically confirm that the concurrent HAM approaches outperform the
state of the art significantly on RoboCup Keepaway. In future work, we would like to
apply this idea to the full RoboCup soccer simulation game and other challenging do-
mains that require very complex behaviors. The way we taking advantage of internal
transitions within a HAM can be seen as leveraging some prior knowledge of the tran-
sition model of a reinforcement learning problem, which happens to be deterministic.
We would also like to extend this internal transition idea to more general reinforcement
learning problems, where models are partially known in advance.

8 Acknowledgments

Funding for this research was provided by ONR under contract N00014-12-1-0609,
and by DARPA under contract N66001-15-2-4048. Opinions, findings, and conclusion
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the view of the funding agencies. The authors would like to thank
the WrightEagle soccer simulation team (particularly, Changjie Fan, Feng Wu, Ke Shi,
Haochong Zhang and Guanghui Lu) for contributing to the base code used in the ex-
periment. The authors would also thank the anonymous reviewers for their valuable
comments and suggestions.

References

1. Andre, D., Russell, S.J.: Programmable reinforcement learning agents. Advances in neural
information processing systems pp. 1019-1025 (2001)

2. Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents.
In: Proceedings of the 8th National Conference on Artificial Intelligence and 14th Confer-
ence on Innovative Applications of Artificial Intelligence. pp. 119-125 (2002)

3. Bai, A, Russell, S.J.: Efficient reinforcement learning with hierarchies of machines by lever-
aging internal transitions. In: Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19 - 25 (2017)

4. Bai, A., Wu, F,, Chen, X.: Online planning for large Markov decision processes with hierar-
chical decomposition. ACM Transactions on Intelligent Systems and Technology 6(4), 45
(2015)

5. Barto, A., Mahadevan, S.: Recent advances in hierarchical reinforcement learning. Discrete
Event Dynamic Systems 13, 341-379 (2003)

6. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ, USA (1957)

7. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decom-
position. Journal of Machine Learning Research 13(1), 63 (May 1999)

8. Kalyanakrishnan, S., Liu, Y., Stone, P.: Half field offense in robocup soccer: A multiagent
reinforcement learning case study. RoboCup 2006: Robot Soccer World Cup X pp. 72-85
(2007)

10.

11.

12.

13.

14.

15.

17.

18.

. Kalyanakrishnan, S., Stone, P.: Learning complementary multiagent behaviors: A case study.

In: Robot Soccer World Cup. pp. 153-165. Springer (2009)

Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E., Matsubara, H.,
Noda, 1., Asada, M.: The robocup synthetic agent challenge 97. In: RoboCup-97: Robot
Soccer World Cup I, pp. 62-73. Springer (1998)

Marthi, B., Russell, S.J., Latham, D., Guestrin, C.: Concurrent hierarchical reinforcement
learning. In: IJCAL pp. 779-785 (2005)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,
A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529-533 (2015)

Moore, E.F.: Gedanken-experiments on sequential machines. Automata studies 34, 129-153
(1956)

Parr, R., Russell, S.: Reinforcement learning with hierarchies of machines. In: Advances in
Neural Information Processing Systems. vol. 10 (1998)

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go
with deep neural networks and tree search. Nature 529(7587), 484-489 (2016)

. Stone, P, Sutton, R., Kuhlmann, G.: Reinforcement learning for robocup soccer keepaway.

Adaptive Behavior 13(3), 165-188 (2005)

Stone, P., Kuhlmann, G., Taylor, M.E., Liu, Y.: Keepaway soccer: From machine learning
testbed to benchmark. In: Robot Soccer World Cup. pp. 93-105. Springer (2005)

Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT press Cam-
bridge (1998)

. Sutton, R., Precup, D., Singh, S.: Between MDPs and semi-MDPs: A framework for tempo-

ral abstraction in reinforcement learning. Artificial Intelligence 112(1), 181-211 (1999)

	Concurrent Hierarchical Reinforcement Learning for RoboCup Keepaway

